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Notation

Set theory

𝑥 ∈ 𝐴 𝑥 is an element of the set 𝐴
𝐴 ∪ 𝐵 union of two sets
𝐴 ∩ 𝐵 intersection of two sets
𝐴 ⧵ 𝐵 difference of two sets
𝐴∆𝐵 symmetric difference: 𝐴∆𝐵 = (𝐴⧵𝐵)∪(𝐵⧵𝐴)
P (𝐴) power set of 𝐴 (the set of all subsets of 𝐴)
(𝑥𝑛)𝑁𝑛=1 finite sequence 𝑥1, 𝑥2,… , 𝑥𝑁
(𝑥𝑛)∞𝑛=1 infinite sequence 𝑥1, 𝑥2,…
(𝑥𝑛)𝑛 countable (finite or infinite) family
(𝑥𝑖)𝑖∈𝐼 family indexed by an arbitrary index set 𝐼
⋃𝑖∈𝐼 𝐴𝑖 union of a family of sets
⋂𝑖∈𝐼 𝐴𝑖 intersection of a family of sets
⨄𝑖∈𝐼 𝐴𝑖 union of disjoint sets
Im(𝑓) the image 𝑓(𝐴) of a function 𝑓∶ 𝐴 → 𝐵
|𝐴| number of elements in the set 𝐴

Specific sets

ℕ natural numbers 1, 2,…
ℤ integers
ℝ real numbers
ℝ extended real numbers ℝ ∪ {−∞,∞}
ℂ complex numbers 𝑥 + 𝑖𝑦
ℝ𝑑 𝑑-dimensional Euclidean space

Measure theory

F,G,… 𝜎-algebras denoted by fancy letters Definition 1.1
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B Borel 𝜎-algebra of some topological space Definition 1.6
𝜎(A) 𝜎-algebra generated by a family of subsets Definition 1.4
𝜇, 𝜈 measures Definition 1.8
𝟙𝐴(𝑥) indicator function: 1 if 𝑥 ∈ 𝐴, 0 otherwise

Probability theory

𝛺 sample space Definition 1.9
𝜔 outcome, 𝜔 ∈ 𝛺 Definition 1.9
ℙ probability measure Definition 1.9
𝜎(𝑋) 𝜎-algebra generated by the randomvariable𝑋 Definition 1.22
lim sup𝑛 𝐴𝑛 the event that infinitely many of 𝐴𝑛 happen Definition 2.1
lim inf𝑛 𝐴𝑛 the event that ultimately all of 𝐴𝑛 happen Definition 2.1

Various notation

𝑎 ∧ 𝑏 minimum of 𝑎 and 𝑏
𝑎 ∨ 𝑏 maximum of 𝑎 and 𝑏
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Introduction

Probability as an intuitive notion is probably very old. Like in that very first
sentence, we run into situations where chance has to be estimated all the time –
whether it was our gatherer ancestors guessingwhere to find food, or amodern
judge weighing evidence in a court of justice; Games of chance are older than
the written history [9].

Finding systematic ways to reason about probabilities on the other hand
does not seem to be so old. Gambling was a driving force in early mathe-
matical investigations into probability, starting with Cardano in 16th century
who in his study of dice games defined odds as the ratio of favorable outcomes
to unfavorable ones, and continuing with Pascal and Fermat in 17th century
whose work among other things lead to the notion of expected value.

In modern mathematical language we could try to axiomatize some kind of
early versions of probability theory suitable for e.g. dice games by postulating
the following:

• There is a nonempty finite set 𝛺 of possible outcomes.

• Each outcome 𝜔 ∈ 𝛺 has a probability 𝑝𝜔 ∈ [0, 1].

• We have ∑𝜔∈𝛺 𝑝𝜔 = 1.

One can then proceed by defining other probabilistic concepts such as events,
random variables, expectations and independence.

Example. Let 𝛺 ≔ {𝐻, 𝑇} × {1, 2, 3, 4, 5, 6} and 𝑝𝜔 = 1/12 for all 𝜔 ∈ 𝛺. We
can view each pair (𝑡, 𝑑) ∈ 𝛺 as a simultaneous toss of a fair coin and a 6-sided
die.

• A random variable is a function 𝑋∶ 𝛺 → ℝ. For instance 𝑋(𝑡, 𝑑) = 𝑑
gives us the value of the die toss,𝑌(𝑡, 𝑑) = 𝟙{𝐻}(𝑡) is 1 if the coin toss was
heads and 0 otherwise, and 𝑍(𝑡, 𝑑) = 2𝑑 − 3𝟙{𝑇}(𝑡) would be a random
variable which is 2 times the die toss, minus 3 if the coin toss was tails.

• Events are subsets of𝛺, for instance the event {𝐻}×{1, 3, 5} corresponds
to tossing a heads and an odd number. The same event could also be
defined by using the random variables as𝑋−1({1, 3, 5})∩𝑌−1({1}), which
we often write as {𝑋 ∈ {1, 3, 5}} ∩ {𝑌 = 1}.

• The probability of an event 𝐸 is denoted by ℙ[𝐸] ≔ ∑𝜔∈𝐸 𝑝𝜔.
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Introduction

• The random variables𝑋 and 𝑌 are independent, meaning that

ℙ[𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵] = ℙ[𝑋 ∈ 𝐴]ℙ[𝑌 ∈ 𝐵]

for all 𝐴, 𝐵 ⊂ ℝ. This is also reflected in the product structure of the
space 𝛺: Each option for the coin toss has the same options and proba-
bilities for the die throw. ◆

• The expected value of a random variable𝑋 is the weighted sum

𝔼[𝑋] = ∑
𝜔∈𝛺
𝑋(𝜔)𝑝𝜔,

which for our particular𝑋 equals 16(1 + 2 +⋯ + 6) =
7
2 .

The above framework works nicely as long as the sample space 𝛺 is finite
(or countable), but modern applications of probability have come a long way
from the simple – or often not so simple! – combinatorics of die throws and
card games. Indeed, the view that everything is captured by the probabilities
of the individual outcomes 𝜔 ∈ 𝛺 starts to fall apart when the number of pos-
sible outcomes becomes uncountable, such as when trying to choose a random
number from the interval [0, 1].

Exercise. Show that one cannot assign probabilities 𝑝𝑥 > 0 for all 𝑥 ∈ [0, 1]
in such a way that ∑𝑥∈[0,1] 𝑝𝑥 = 1. Here we interpret the sum as ∑𝑥∈[0,1] 𝑝𝑥 ≔
sup𝑆⊂[0,1],𝑆 is finite ∑𝑥∈𝑆 𝑝𝑥. ◆

The usual axiomatization of probability theory by Kolmogorov therefore lets
go of the idea that the probabilities of individual 𝜔 ∈ 𝛺 determine the proba-
bilities of events, and instead directly defines probabilities on the events. This
allows us to say for instance that the probability of a uniformly distributed ran-
dom number on [0, 1] has probability 1/3 to lie in the interval [1/3, 2/3], even
though the probability of hitting any single fixed 𝑥 ∈ [0, 1] is 0. This point of
view will naturally lead us to measure theory, which will present some techni-
cal challenges but also in the end gives a richer framework to work in.1

As a result we will see that the underlying probability space 𝛺 largely loses
its importance: There are typically infinitely many different ways to choose a
set𝛺, a bunch of events on it and probabilities for those events, but in the end
the only thing we care about it is that 𝛺 is large enough so that it can be used
to define the specific events and random variables we want to model in our
applications. Thus 𝛺 could intuitively be thought of as an abstract set which

1Although the measure theoretic foundation of probability has become the standard, mathe-
matics is flexible and one can wonder about alternative approaches to modeling probabil-
ity. A curious reader can for instance take a look at [5] for a nice story using nonstandard
analysis.
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Introduction

contains the whole future of the universe behind a single𝜔, and our events and
random variables could be just a tiny part of the total randomness included!
Yet, it will require from us a considerable amount of measure theoretic work
to see that such powerful 𝛺s do exist within set theory.

After setting up the foundations, we will state and rigorously prove some of
the main theorems of basic probability such as the law of large numbers and
the central limit theorem. Considerable focus will also be given to different
modes of convergence of random variables and associated function spaces of
random variables.

8



Foundations

1.1 𝜎-algebras

Wewill start by defining 𝜎-algebras, which will later on be used tomodel prob-
abilistic events.

Definition 1.1. Let 𝑇 be any set. A 𝜎-algebra on 𝑇 is a nonempty collection
G of subsets of 𝑇 that is closed under complementation and taking countable
unions. ◆

• Note that it follows from the definition that ifG is a 𝜎-algebra on𝑇, then
∅,𝑇 ∈ G, and if 𝐴1, 𝐴2,⋯ ∈ G then⋂∞𝑛=1 𝐴𝑛 ∈ G.

The pair (𝑇,G) is called ameasurable space and the elements ofG are called
measurable subsets. One often says just “measurable subsets of 𝑇” if the 𝜎-
algebra G is clear from the context. Any set has at least one 𝜎-algebra on it, as
is seen in the following example.

Example 1.2. The set {∅, 𝑇} is a 𝜎-algebra on 𝑇. It is the smallest 𝜎-algebra on
𝑇 and we call it the trivial 𝜎-algebra. There is also a unique largest 𝜎-algebra
on 𝑇, the power set P (𝑇). ◆

Lemma1.3. Let (G𝑖)𝑖∈𝐼 be a collection of𝜎-algebras on𝑇 indexed by an arbitrary
index set 𝐼. Then G = ⋂𝑖∈𝐼 G𝑖 is a 𝜎-algebra.

Proof. As∅ ∈ G𝑖 for all 𝑖 ∈ 𝐼, we see that∅ ∈ G so G is nonempty.
If 𝐴 ∈ G then 𝐴 ∈ G𝑖 for all 𝑖 ∈ 𝐼. Thus 𝑇 ⧵ 𝐴 ∈ G𝑖 for all 𝑖 ∈ 𝐼 and we see

that 𝑇 ⧵ 𝐴 ∈ G.
Finally if (𝐴𝑛) is a countable family of sets in G, it is also a countable family

of sets in eachG𝑖 and thus its union belongs to eachG𝑖 and hence also toG.

Definition 1.4. Let (𝐴𝑖)𝑖∈𝐼 be a collection of subsets of 𝑇 indexed by an arbi-
trary index set 𝐼. Then the 𝜎-algebra generated by (𝐴𝑖)𝑖∈𝐼 is given by

𝜎((𝐴𝑖)𝑖∈𝐼) ≔ ⋂{G ∈ P (P (𝑇)) ∶ G is a 𝜎-algebra on 𝑇 and {𝐴𝑖}𝑖∈𝐼 ⊂ G}. ◆

Exercise 1.5 (𝜎-algebras on finite sets). Assume that 𝑇 is finite and G is a 𝜎-
algebra on 𝑇. Show that there exists a unique way to partition 𝑇 into disjoint
sets 𝐴1,… ,𝐴𝑛 ∈ G such that every set in G can be expressed as the union of
some 𝐴𝑖1 ,… ,𝐴𝑖𝑘 , 1 ≤ 𝑖1,… , 𝑖𝑘 ≤ 𝑛.
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1. Foundations

Conversely, show that if𝐴1,… ,𝐴𝑛 is a partition of 𝑇 into disjoint sets, then
the collection of all different unions 𝐴𝑖1 ∪⋯ ∪ 𝐴𝑖𝑘 forms a 𝜎-algebra. ◆

A very common situation is when the 𝜎-algebra is generated by a topology.

Definition 1.6. Let 𝑇 be a topological space. The Borel 𝜎-algebra B on 𝑇 is
the 𝜎-algebra generated by the open sets of 𝑇. ◆

It is often easy to find nicer generating collections for the Borel 𝜎-algebra
than arbitrary open sets. In particular for the real line we have the following
useful lemma.

Lemma 1.7.The Borel 𝜎-algebra on ℝ is generated by any of the following col-
lections of sets:

• Open intervals (𝑎, 𝑏) with 𝑎, 𝑏 ∈ ℚ.

• Closed intervals [𝑎, 𝑏] with 𝑎, 𝑏 ∈ ℚ.

• Intervals of the form (−∞, 𝑡) with 𝑡 ∈ ℚ.

• Intervals of the form (−∞, 𝑡] with 𝑡 ∈ ℚ.

Proof. Exercise.

1.2 Measures

Having defined 𝜎-algebras we next turn our attention to measures, which are
a way to assign a size to sets in a 𝜎-algebra in a consistent way.

Definition 1.8. A measure 𝜇 on a measurable space (𝑇,G) is a countably ad-
ditive map 𝜇∶ G→ [0,∞]. ◆

• Countable additivity means that for any countable (finite or infinite)
family (𝐴𝑛) of disjoint sets in G we have 𝜇(⋃𝑛 𝐴𝑛) = ∑𝑛 𝜇(𝐴𝑛).

• By applying this to the empty family we see that 𝜇(∅) = 0.1

Given a set 𝑇, a 𝜎-algebra G and a measure 𝜇, we call the triple (𝑇,G, 𝜇) a
measure space. A central object for us will be a special measure space called
the probability space.

Definition1.9. Let𝛺 be a set,F a𝜎-algebra on𝛺 andℙ∶ F→ [0, 1] ameasure
such that ℙ[𝛺] = 1. We call the triple (𝛺,F, ℙ) a probability space, the set 𝛺
the sample space and the measure ℙ a probability measure. The elements of
𝛺 are called outcomes and the elements of F are events. For any event 𝐴 ∈ F
we call ℙ[𝐴] the probability of 𝐴. ◆
1Often in the literature countable additivity is defined so that additivity holds for any infi-

nite sequence 𝐴1, 𝐴2,… but not a priori for finite families. In this case one needs to also
explicitly assume that 𝜇(∅) = 0.
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1. Foundations

From now on the symbols𝛺, F and ℙ will always refer to the sample space,
the 𝜎-algebra of events and the probability measure of some probability space
(𝛺,F, ℙ).

Example 1.10. Here are a couple of simple examples of measure spaces.

• Let 𝑇 be any set and define the counting measure 𝜇 on the 𝜎-algebra
P (𝑇) by setting

𝜇(𝐴) ≔ {
|𝐴|, if 𝐴 is finite
∞, otherwise

for all 𝐴 ⊂ 𝑇.

• If𝑇 is finite andnonempty, wemaydefine theuniformprobabilitymea-
sure 𝜈 on 𝑇 by letting 𝜈 ≔ 𝜇/|𝑇|.

• Assume that 𝑇 is nonempty and fix 𝑥 ∈ 𝑇. The Dirac delta measure 𝜇𝑥
at 𝑥 is defined by setting 𝜇𝑥(𝐴) ≔ 𝟙𝐴(𝑥) for all 𝐴 ⊂ 𝑇.

• Assume that 𝛺 is countable and for every 𝜔 ∈ 𝛺 we have assigned a
probability 𝑝𝜔 ∈ [0, 1] in such a way that ∑𝜔∈𝛺 𝑝𝜔 = 1. Then ℙ[𝐴] ≔
∑𝜔∈𝐴 𝑝𝜔 is a probability measure on the 𝜎-algebra F ≔ P (𝛺). ◆

Another central example is the Lebesgue measure, whose existence we will
show later on.

Example 1.11. There is a unique measure 𝜆 defined on the Borel 𝜎-algebra of
ℝ𝑑 that satisfies

• For any rectangle 𝑅 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑛, 𝑏𝑛] we have

𝜆(𝑅) =
𝑛

∏
𝑘=1
(𝑏𝑘 − 𝑎𝑘).

The measure 𝜆 is called the Lebesgue measure on ℝ𝑑. ◆
Let us list some basic properties of probability measures.

Lemma 1.12. Let (𝛺,F, ℙ) be a probability space.

• If 𝐴, 𝐵 ∈ F and 𝐴 ⊂ 𝐵, then ℙ[𝐴] ≤ ℙ[𝐵].

• If (𝐴𝑛)∞𝑛=1 is a sequence of events, then ℙ[⋃
∞
𝑛=1 𝐴𝑛] ≤ ∑

∞
𝑛=1 ℙ[𝐴𝑛].

• If 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 ⊂ … , then ℙ[⋃∞𝑛=1 𝐴𝑛] = lim𝑛→∞ ℙ[𝐴𝑛].

• If 𝐴1 ⊃ 𝐴2 ⊃ 𝐴3 ⊃ … , then ℙ[⋂∞𝑛=1 𝐴𝑛] = lim𝑛→∞ ℙ[𝐴𝑛].

Proof. Exercise.
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1. Foundations

Remark. The above lemma holds also for general measures, provided that in
the last item we assume that one of𝐴𝑛 has finite measure – what can go wrong
otherwise? ◆

1.3 Random variables

Definition 1.13. Let (𝑇1,F1) and (𝑇2,F2) be two measurable spaces.

• A map 𝑓∶ 𝑇1 → 𝑇2 is called measurable (w.r.t. the 𝜎-algebras F1 and
F2) if for all 𝐴 ∈ F2 we have 𝑓−1(𝐴) ∈ F1.

• If the domain 𝑇1 is a probability space, we call 𝑓 a 𝑇2-valued random
variable.

• If furthermore (𝑇2,F2) = (ℝ,B) we drop “𝑇2-valued” and simply say
that 𝑓 is a random variable. ◆

Random variables are the meat and butter of probability theory since in the
end what really matters are the (joint) laws of the random variables we de-
fine. This means that although there are many ways to construct the under-
lying probability space (𝛺,F, ℙ), it does not matter which particular way we
pick – we are happy to just know that a rich enough probability space exists on
which we can define our random variables. In the end we want to be able to
simply say something like

Let 𝑋 and 𝑌 be two independent standard normal random vari-
ables and given𝑋 and𝑌 let𝑍 be an Poisson random variable with
mean𝑋2 + 𝑌2.

and know that one can construct𝛺,F andℙwhich are able to host the random
variables𝑋, 𝑌 and 𝑍. We are not yet there, however.

The following proposition is often useful when checking that a function is
measurable.

Proposition 1.14. Let (𝑇1,F1) and (𝑇2,F2) be two measurable spaces and let
𝑓∶ 𝑇1 → 𝑇2 be a function. Assume that F2 is generated by some sets (𝐴𝑖)𝑖∈𝐼.
Then 𝑓 is measurable if and only if 𝑓−1(𝐴𝑖) ∈ F1 for all 𝑖 ∈ 𝐼.

Proof. Clearly if 𝑓 is measurable then the condition holds.
The proof of the opposite direction uses a strategy that is very useful inmany

theorems regarding 𝜎-algebras, and the reader is advised to memorize it: To
show that some proposition 𝑃(𝐴) holds for all sets 𝐴 in a 𝜎-algebra F generated
by sets (𝐴𝑖)𝑖∈𝐼, it is enough to show that:

• The set {𝐴 ∈ F ∶ 𝑃(𝐴)} is itself a 𝜎-algebra.

12



1. Foundations

• 𝑃(𝐴𝑖) is true for all 𝑖 ∈ 𝐼.

In the present case 𝑃(𝐴) is the proposition “𝑓−1(𝐴) is measurable”. Let us
thus define

G ≔ {𝐴 ∈ F2 ∶ 𝑓−1(𝐴) ∈ F1}.

By assumptionwe have𝑓−1(𝐴𝑖) ∈ F1 for all 𝑖 ∈ 𝐼. To show thatG is a 𝜎-algebra
we check the following:

• G is closed under complementation: Given 𝐵 ∈ G we have 𝑓−1(𝐵𝑐) =
(𝑓−1(𝐵))𝑐 ∈ F1, so 𝐵𝑐 ∈ G.

• G is closed under countable unions: If (𝐵𝑛)𝑛 is a countable collection of
sets in G, then 𝑓−1(⋃𝑛 𝐵𝑛) = ⋃𝑛 𝑓

−1(𝐵𝑛) ∈ F1, so⋃𝑛 𝐵𝑛 ∈ G.

Combining the above propositionwith Lemma 1.7 one sees that to check the
measurability of a function 𝑓∶ 𝑇 → ℝ it is enough to for example check the
measurability of 𝑓−1((−∞, 𝑡)) for all 𝑡 ∈ ℝ (or ℚ). This is useful for instance
in the proof of the following elementary facts.

Proposition 1.15.We have the following basic facts on combining random vari-
ables.

• Assume that𝑋 is a random variable and 𝑓∶ ℝ → ℝ is Borel measurable,
then 𝑓 ∘ 𝑋 is a random variable.

• Assume that 𝑋 and 𝑌 are random variables, then also 𝑋 + 𝑌, 𝑋 − 𝑌 and
𝑋𝑌 are random variables.

• Assume that 𝑋 and 𝑌 are random variables and 𝑌(𝜔) ≠ 0 for all 𝜔 ∈ 𝛺.
Then𝑋/𝑌 is a random variable.

Proof. Exercise. Hint: One can express the set {𝑋 + 𝑌 < 𝑡} as the countable
union

{𝑋 + 𝑌 < 𝑡} = ⋃
𝑢∈ℚ
({𝑋 < 𝑢} ∩ {𝑌 < 𝑡 − 𝑢}).

In addition to sums and products, one often wants to look at the measur-
ability of various limits of random variables. To this end it will be helpful to
define the extended reals.

Definition 1.16. We denote by ℝ the extended real numbers ℝ ∪ {−∞,∞}
and endow it with the topology generated by the open intervals in ℝ together
with the intervals [−∞, 𝑥) and (𝑥,∞] for 𝑥 ∈ ℝ. The set ℝ with its Borel
𝜎-algebra becomes a measurable space. ◆

Exercise 1.17. Show that 𝑋 is a ℝ-valued random variable if and only if the
sets𝑋−1({±∞}) and𝑋−1(𝐴) are measurable for all Borel 𝐴 ⊂ ℝ. ◆

13



1. Foundations

Proposition 1.18. Assume that (𝑋𝑛)∞𝑛=1 is a sequence of random variables. Then

inf
𝑛
𝑋𝑛, sup

𝑛
𝑋𝑛, lim inf

𝑛→∞
𝑋𝑛 and lim sup

𝑛→∞
𝑋𝑛

are ℝ-valued random variables. In particular pointwise limits of random vari-
ables are random variables if the limit exists at every point.

Proof. Exercise.

The most important property of a random variable is its distribution, which
is a probability measure on the target space of the variable.

Definition 1.19. Let 𝑋 be a 𝑇-valued random variable. The law (or distri-
bution) of 𝑋 is the probability measure 𝑋∗ℙ on 𝑇 defined by 𝑋∗ℙ(𝐴) ≔
ℙ(𝑋−1(𝐴)).2 ◆

Example 1.20. Let 𝛺 = {𝐻, 𝑇} × {1,… , 6} with uniform probability measure
on the 𝜎-algebraP (𝛺), and define the random variables𝑋(𝑐, 𝑑) = 𝟙{𝐻}(𝑐) and
𝑌(𝑐, 𝑑) = 𝑑. Then the law of 𝑋(𝑐, 𝑑) equals 12(𝛿0 + 𝛿1) and the law of 𝑌(𝑐, 𝑑)
equals 16 ∑

6
𝑘=1 𝛿𝑘. The random variables 𝑍 = 1 − 𝑋 and𝑊 = 1+(−1)

𝑌

2 have the
same law as𝑋, but their relationships to𝑋 are different. For instance𝑋+𝑍 = 1
is a constant random variable, while𝑋+𝑊 takes value 0 with probability 1/4,
value 1 with probability 1/2 and value 2 with probability 1/4. Thus (𝑋, 𝑍) and
(𝑋,𝑊) have different joint laws, although theirmarginal laws are the same. ◆

The most common way to define random variables is by giving their law.

Example 1.21. A standard normal random variable 𝑋 is a random variable
whose law is given by

𝑋∗ℙ(𝐴) = ∫
𝐴

𝑒−
𝑥2
2

√2𝜋
𝑑𝑥

for any Borel set𝐴 ⊂ ℝ. The function 𝑥 ↦ 𝑒
− 𝑥
2
2

√2𝜋 is called the probability density
function of𝑋 with respect to the Lebesgue measure. ◆

1.4 Sub-𝜎-algebras as encoders of information

Definition 1.22. Let 𝑋 be a random variable. The 𝜎-algebra generated by 𝑋
is defined by

𝜎(𝑋) ≔ {𝑋−1(𝐴) ∶ 𝐴 ∈ B},

2In general if 𝑓 is a map from a measure space (𝑇1,G1, 𝜇) to a measurable space (𝑇2,G2), one
can define on the latter space a measure 𝜈 by setting 𝜈(𝐴) = 𝜇(𝑓−1(𝐴)) for all 𝐴 ∈ G2. The
measure 𝜈 is called the push-forward measure of 𝜇 via the map 𝑓 and also denoted by
𝑓∗𝜇.

14



1. Foundations

where B is the Borel 𝜎-algebra on ℝ. ◆

Exercise 1.23. Show that 𝜎(𝑋) is indeed a 𝜎-algebra. ◆
In the presence of a fixed outcome𝜔 ∈ 𝛺, the 𝜎-algebra 𝜎(𝑋) can be thought

of as consisting of all the available information about 𝑋: If we want to know
whether 𝑋 lies in some particular Borel set 𝐴, we can check whether 𝜔 ∈
𝑋−1(𝐴).

Definition 1.24. Let 𝑋 and 𝑌 be random variables. We say that 𝑌 is measur-
able w.r.t. 𝑋 or𝑋-measurable if 𝜎(𝑌) ⊂ 𝜎(𝑋), or equivalently 𝑌−1(𝐴) ∈ 𝜎(𝑋)
for all 𝐴 ∈ B. ◆

The following theorem makes precise the idea that if 𝑌 is 𝑋-measurable,
then 𝑌 can be reconstructed from𝑋.

Theorem 1.25. Assume that 𝑋 and 𝑌 are random variables such that 𝑌 is 𝑋-
measurable. Then there exists a Borel-measurable function𝑓∶ ℝ → ℝ such that
𝑌 = 𝑓 ∘ 𝑋.

The proof of this theorem will make use of the following approximation re-
sult which we will find useful also later on.

Definition 1.26. A random variable 𝑋 is simple if it takes only finitely many
different values. ◆

Proposition 1.27. Let𝑋 be a random variable. Then there exists a sequence𝑋𝑛
of simple random variables such that lim𝑛→∞ 𝑋𝑛 = 𝑋.

Proof. Let

𝑋𝑛 ≔
𝑛2

∑
𝑘=−𝑛2

𝑘
𝑛
𝟙𝑋−1([ 𝑘𝑛 , 𝑘+1𝑛 )).

Then clearly for fixed 𝜔 ∈ 𝛺 we have for 𝑛 ≥ |𝑋(𝜔)| that

𝑋𝑛(𝜔) =
⌊𝑛𝑋(𝜔)⌋
𝑛
,

which tends to𝑋(𝜔) as 𝑛 → ∞.

Proof of Theorem 1.25. Note that𝑋 and 𝑌 are random variables also in the re-
stricted probability space (𝛺, 𝜎(𝑋), ℙ). Thus by Proposition 1.27 there exists a
sequence (𝑌𝑛)∞𝑛=1 of𝑋-measurable simple functions such that lim𝑛→∞ 𝑌𝑛 = 𝑌.

Fix 𝑛 ≥ 1. Since 𝑌𝑛 is simple, it takes 𝑚 different values 𝑎1,… , 𝑎𝑚 in the
sets 𝐴1,… ,𝐴𝑚 ∈ 𝜎(𝑌𝑛), respectively. As 𝜎(𝑌𝑛) ⊂ 𝜎(𝑋), we may write 𝐴𝑘 =
𝑋−1(𝐵𝑘) for some Borel sets (𝐵𝑘)𝑚𝑘=1, and hence 𝑌𝑛 = 𝑓𝑛 ∘ 𝑋 where 𝑓𝑛 is the

15



1. Foundations

Borel measurable function ℝ → ℝ defined by

𝑓𝑛(𝑥) ≔
𝑚

∑
𝑘=1
𝑎𝑘𝟙𝐵𝑘 (𝑥).

By Proposition 1.18 the function ̃𝑓 = lim sup𝑛→∞ 𝑓𝑛 is a measurable func-
tion ℝ → ℝ. We may define a function 𝑓∶ ℝ → ℝ by setting

𝑓(𝑥) ≔ {
0, if ̃𝑓(𝑥) = ±∞
̃𝑓(𝑥), otherwise

.

Then 𝑓 is measurable and 𝑌 = lim𝑛→∞ 𝑌𝑛 = lim𝑛→∞ 𝑓𝑛 ∘ 𝑋 = 𝑓 ∘ 𝑋, since the
limit lim𝑛→∞ 𝑓𝑛(𝑧) = 𝑓(𝑧) holds for all 𝑧 ∈ Im(𝑋).

Since there is no probability measure involved in the definition, themeasur-
ability of one randomvariable with respect to another does not saymuch about
the distribution of these two variables. Now, the opposite of measurability of
𝑋 w.r.t. 𝑌 would in some sense be to be unable to say anything about 𝑋 when
knowing 𝑌, and interestingly the probability measure becomes important to
make a natural definition in this case.

As a first attempt – without defining probabilities – one could try for in-
stance to require that 𝑋(𝑌−1{𝑎}) does not depend on 𝑎 ∈ ℝ, i.e. 𝑋 always at
least has the same possibilities no mattery which value 𝑌 takes. This however
is not very natural for various reasons, the most important of which is that
probabilistically thinking we should not only require that the possible values
for𝑋 stay the same when conditioning on 𝑌, but also that the probabilities do
not depend on 𝑌. This is called independence.

More generally and precisely, two 𝜎-algebras F1,F2 are independent if nei-
ther contains probabilistic information about the other, meaning that knowing
that 𝐴 ∈ F1 happened does not affect the probability that 𝐵 ∈ F2 happened,
i.e. ℙ[𝐵|𝐴] = ℙ[𝐵]. By the elementary definition of conditional probability we
would thus have ℙ[𝐴 ∩ 𝐵] = ℙ[𝐴]ℙ[𝐵], and this is what we will actually take
as the definition.

Definition 1.28. LetF1,… ,F𝑛 be sub-𝜎-algebras ofF. We say thatF1,… ,F𝑛
are independent if for all (𝐴𝑖)𝑛𝑖=1 ∈ ∏

𝑛
𝑖=1 F𝑖 we have

ℙ[
𝑛

⋂
𝑖=1
𝐴𝑖] =

𝑛

∏
𝑖=1
ℙ[𝐴𝑖].

Moreover:

• An arbitrary collection (F𝑖)𝑖∈𝐼 of 𝜎-algebras is independent if any finite
subcollection of it consists of independent 𝜎-algebras.

16



1. Foundations

• Events (𝐴𝑖)𝑖∈𝐼 are independent if 𝜎({𝐴𝑖}) are independent.

• Random variables (𝑋𝑖)𝑖∈𝐼 are independent if 𝜎(𝑋𝑖) are independent. ◆

The notion of independence is also tightly tied to products of probability
spaces which we will discuss later. The point of the next exercise is to illustrate
this idea in the case of at most countable number of outcomes.

Exercise 1.29. Let (𝑋𝑘)𝑛𝑘=1 be random variables with 𝑋𝑘 defined on a prob-
ability space (𝛺𝑘,F𝑘, ℙ𝑘) where 𝛺𝑘 is countable and F𝑘 = P (𝛺𝑘). Define
𝛺 ≔ ∏𝑛𝑘=1 𝛺𝑘, let F ≔ P (𝛺) and define a function ℙ on P (𝛺) by setting

ℙ[{(𝜔1,… , 𝜔𝑛)}] ≔ ℙ1[{𝜔1}]…ℙ𝑘[{𝜔𝑛}]

for singletons (𝜔1,… , 𝜔𝑛) and extending to arbitrary subsets by summation.
Show that ℙ defines a probability measure and that the random variables
�̃�𝑘 ∶ 𝛺 → ℝ given by �̃�𝑘((𝜔1,… , 𝜔𝑛)) ≔ 𝑋𝑘(𝜔𝑘) are independent and �̃�𝑘 has
the same law as𝑋𝑘. ◆

1.5 Infinitely many coin tosses

So far the most complicated random variables we know how to construct are
the ones that take at most countably many different values. The purpose of
this section is to show how to construct random sequences (𝑋𝑛)∞𝑛=1, where𝑋𝑛
are independent Bernoulli random variables. This will have a big impact on
our repertoire of random variables, as we will see that by using infinitely many
coin tosses we will be able to for instance construct random variables with
arbitrary laws on ℝ. With new powers come new responsibilities, however,
and we will have to be a bit more careful as somewhat weird phenomena such
as nonmeasurable sets will appear as a by-product.

For the construction a natural starting point is to define 𝛺 = {0, 1}ℕ and
𝑋𝑛((𝜔𝑘)∞𝑘=1) ≔ 𝜔𝑛. The hard part is in defining the 𝜎-algebra F and the prob-
ability measure ℙ, since the latter cannot be defined on all subsets of𝛺 simul-
taneously as is illustrated by the following proposition.

Proposition 1.30. Let 𝛺 = {0, 1}ℤ and define the shift-operator 𝑇∶ 𝛺 → 𝛺
which maps (𝜔𝑘)𝑘∈ℤ ↦ (𝜔𝑘+1)𝑘∈ℤ.3 By symmetry it would be natural to require
that ℙ is 𝑇-invariant and that ℙ[{𝜔}] = 0 for any single 𝜔 ∈ 𝛺. However no
such ℙ can be defined for all sets in P (𝛺) simultaneously.

Proof. Assume that such ℙ exists. Let us say that 𝜔1 and 𝜔2 are equivalent
if 𝜔1 = 𝑇𝑛𝜔2 for some 𝑛 ∈ ℤ. By the axiom of choice we can construct a

3Note that it does not matter whether we index the sequences using ℕ or ℤ since both are
countable. The shift-operator is just easier to define using ℤ.
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1. Foundations

set 𝐴 which contains exactly one representative from each equivalence class.
We note that if 𝜔 = 𝑇𝑛𝜔 for some 𝑛 ∈ ℤ, then 𝜔 must be of the periodic
form (… , 𝜔𝑚, 𝜔1, 𝜔2,… , 𝜔𝑚, 𝜔1,… ) and the length of the period𝑚 divides 𝑛.
Since there are only countably many such periodic 𝜔’s, we may remove them
from 𝐴 without changing the measure of 𝐴 and obtain a set 𝐵. The sets 𝑇𝑛𝐵
(𝑛 ∈ ℤ) are disjoint, there are countably many of them and their union con-
tains every nonperiodic 𝜔. Thus 1 = ℙ[⋃𝑛∈ℤ 𝑇

𝑛𝐵] = ∑𝑛∈ℤ ℙ[𝐵], but this is a
contradiction since if ℙ[𝐵] ≠ 0, the sum is∞.

To overcome this problem our strategy will be to define ℙ step by step on
larger and larger collections of events, eventually ending up with a 𝜎-algebra
while all the time carefully ensuring that countable additivity is preserved. To
this end, let us begin by calling a set of the form

𝐴 =
∞

∏
𝑛=1
𝐴𝑛, 𝐴𝑖 = {0, 1} for all but finitely many 𝑛

a cylinder set and define

ℙ[𝐴] ≔
∞

∏
𝑛=1
ℙ[𝐴𝑛]

for all cylinder sets, where ℙ[𝐴𝑛] ≔ |𝐴𝑛|/2. Let

𝑅 ≔ {
𝑛

⋃
𝑘=1
𝐴𝑘 ∶ 𝐴1,… ,𝐴𝑛 are disjoint cylinder sets}

denote the collection of all finite unions of disjoint cylinder sets. The family 𝑅
is a nice stepping stone towards a 𝜎-algebra since it forms an algebra.

Definition 1.31. Let 𝑇 be some set and 𝑅 ⊂ P (𝑇). We say that 𝑅 is an algebra
if it is nonempty and closed under complementation and taking finite unions.

◆

Exercise 1.32. Show that 𝑅 is an algebra. Hint: It is probably easiest to do this
in steps, showing that:

• Intersection of two cylinder sets is a cylinder set.

• Complement of a cylinder set is in 𝑅.

• Deduce the result for arbitrary sets in 𝑅. ◆

We next define

ℙ[𝐴] ≔
𝑛

∑
𝑘=1
ℙ[𝐴𝑘]

18
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for any 𝐴 = ⨄𝑛𝑘=1 𝐴
𝑘 ∈ 𝑅. Note that this is well-defined since for 𝑚 large

enough so that 𝐴𝑘𝑗 = {0, 1} for all 1 ≤ 𝑘 ≤ 𝑛 and 𝑗 > 𝑚, we may compute

𝑛

∑
𝑘=1
ℙ[𝐴𝑘] =

𝑛

∑
𝑘=1

∞

∏
𝑗=1

|𝐴𝑘𝑗 |
2
=
𝑛

∑
𝑘=1
2−𝑚|
𝑚

∏
𝑗=1
𝐴𝑘𝑗 | = 2−𝑚|

𝑛

⋃
𝑘=1

𝑚

∏
𝑗=1
𝐴𝑘𝑗 | = 2−𝑚|𝜋𝑚𝐴|,

where 𝜋𝑚 ∶ {0, 1}ℕ → {0, 1}𝑚 is the projection to the first 𝑚 coordinates. The
right hand side is constant for 𝑚 large enough, and hence if 𝐴 = ⨄ ̃𝑛𝑘=1 �̃�

𝑘

is another representation of 𝐴 as a union of cylinder sets, we indeed have
∑𝑛𝑘=1 ℙ[𝐴

𝑘] = ∑ ̃𝑛𝑘=1 ℙ[�̃�
𝑘]. From here it also easily follows that ℙ is finitely

additive on 𝑅, namely if 𝐴 = ⨄𝑛𝑘=1 𝐴
𝑘 and 𝐵 = ⨄𝑚𝑗=1 𝐵

𝑗 are two disjoint ele-
ments in 𝑅, then 𝐴 ∪ 𝐵 can be represented as 𝐴 ∪ 𝐵 = ⨄𝑛𝑘=1 𝐴

𝑘 ⊎ ⨄𝑚𝑗=1 𝐵
𝑗 and

hence

ℙ[𝐴 ∪ 𝐵] =
𝑛

∑
𝑘=1
ℙ[𝐴𝑘] +

𝑚

∑
𝑗=1
ℙ[𝐴𝑗] = ℙ[𝐴] + ℙ[𝐵].

Are we safe now? Remember that we want ℙ to be countably additive. One
thing that could potentially go wrong would be that even though ℙ is finitely
additive on 𝑅, there would be some countable sequence (𝐴𝑛)∞𝑛=1 of disjoint
elements of 𝑅 whose union is also in 𝑅 but ℙ[⨄∞𝑛=1 𝐴𝑛] ≠ ∑

∞
𝑛=1 𝐴𝑛. However

this is in fact not an issue in our case because of the following lemma.

Lemma 1.33.There does not exist any infinite sequence (𝐴𝑛)∞𝑛=1 of disjoint non-
empty elements of 𝑅 such that their union is also in 𝑅.

Proof. Notice that if the union 𝐴 = ⨄∞𝑛=1 𝐴𝑛 is in 𝑅, then adding 𝛺 ⧵ 𝐴 to the
sequence would give us 𝛺 as the union, so it is enough to prove the claim in
the case 𝐴 = 𝛺. Moreover, since any element of 𝑅 is a finite union of cylinder
sets, we may without loss of generality assume that all 𝐴𝑛 are cylinder sets as
well.

Assume that such cylinder sets 𝐴𝑛 with ⨄∞𝑛=1 𝐴
𝑛 = 𝛺 exist. We will con-

struct an element 𝜔 ∈ 𝛺 such that 𝜔 ∉ 𝐴𝑛 for any 𝑛, and this will give us
the contradiction. The construction proceeds by induction: We let 𝜔1 = 0 if
there are infinitely many 𝐴𝑛 such that 0 ∈ 𝐴𝑛1, otherwise there are infinitely
𝐴𝑛 for which 1 ∈ 𝐴𝑛1 and we let 𝜔1 = 1. Similarly, assuming that 𝜔1,… , 𝜔𝑚
have been defined, we let 𝜔𝑚+1 = 0 if there are infinitely many 𝐴𝑛 such that
(𝜔1,… , 𝜔𝑚, 0) ∈ 𝐴𝑛1 × ⋯ × 𝐴𝑛𝑚+1, otherwise there are infinitely many 𝐴𝑛 for
which (𝜔1,… , 𝜔𝑚, 1) ∈ 𝐴𝑛1 × ⋯ × 𝐴𝑛𝑚+1 and we set 𝜔𝑚+1 = 1. But 𝜔 so con-
structed cannot belong to any given 𝐴𝑛, since if 𝑚 is so large that 𝐴𝑛𝑗 = {0, 1}
for all 𝑗 ≥ 𝑚, then because the sets were disjoint, no other 𝐴𝑛

′
has any ele-

ments with starting coordinates (𝜔1,… , 𝜔𝑚), which contradicts the construc-
tion where at every stage there were infinitely many such 𝐴𝑛

′
.
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We have now reached the situation where we have defined ℙ as a countably
additive map4 on the algebra generated by the cylinder sets. This is actually a
scenario where general measure theoretic results start to apply, so let us con-
tinue a bit more abstractly and assume that 𝑇 is some set, 𝑅 is some algebra of
subsets of 𝑇 and 𝜇∶ 𝑅 → [0,∞] is a countably additive map with 𝜇(𝑇) < ∞.

The next and final step is to extend 𝜇 to the 𝜎-algebra generated by 𝑅. To
this end we will define the outer measure 𝜇∗ ∶ P (𝑇) → [0, 1] by setting

𝜇∗(𝐴) ≔ inf {
∞

∑
𝑛=1
𝜇(𝐴𝑛) ∶ 𝐴𝑛 ∈ 𝑅 for all 𝑛 ∈ ℕ,𝐴 ⊂ ⋃

𝑛
𝐴𝑛}.

Lemma 1.34.The outer measure 𝜇∗ satisfies the following properties:

• 𝜇∗(𝐴) < ∞ for all 𝐴 ∈ P (𝑇).

• 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) for all 𝐴, 𝐵 ∈ P (𝑇) such that 𝐴 ⊂ 𝐵.

• 𝜇∗ is countably subadditive on P (𝑇), meaning that

𝜇∗(⋃
𝑛
𝐴𝑛) ≤ ∑

𝑛
𝜇∗(𝐴𝑛)

for any countable family (𝐴𝑛)𝑛 of subsets of 𝑇.

• 𝜇∗(𝐴) = 𝜇(𝐴) for all 𝐴 ∈ 𝑅.

Proof. Exercise.

The main idea in extending the domain of 𝜇 from 𝑅 to a 𝜎-algebra consists
of extending the domain of 𝜇 by setting 𝜇(𝐴) ≔ 𝜇∗(𝐴)whenever the set𝐴 can
be approximated by elements of 𝑅 up to zero 𝜇∗-measure. The key to make
this rigorous is to define the pseudometric 𝑑(𝐴, 𝐵) = 𝜇∗(𝐴∆𝐵) on P (𝑇) and
take the closure of 𝑅 in this topology. We will next show in a series of claims
that 𝑅 is actually a 𝜎-algebra and that 𝜇∗ is countably additive when restricted
to 𝑅.

Claim: 𝑑 is indeed a pseudometric.

We leave this as an exercise.

Claim: 𝜇∗ is continuous in the pseudometric 𝑑.

We see that

𝜇∗(𝐴) − 𝜇∗(𝐵) ≤ 𝜇∗(𝐴 ∩ 𝐵) + 𝜇∗(𝐴 ⧵ 𝐵) − 𝜇∗(𝐵) ≤ 𝜇∗(𝐴 ⧵ 𝐵) ≤ 𝜇∗(𝐴∆𝐵),
4To be clear – in this context countable additivity means that if (𝐴𝑛)∞𝑛=1 is a sequence of

disjoint sets in 𝑅 and it also happens that ⋃∞𝑛=1 𝐴𝑛 is in 𝑅 (which does not have to be the
case in general), then ℙ[⋃∞𝑛=1 𝐴𝑛] = ∑

∞
𝑛=1 ℙ[𝐴𝑛].
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and exchanging the roles of 𝐴 and 𝐵 we have

|𝜇∗(𝐴) − 𝜇∗(𝐵)| ≤ 𝑑(𝐴, 𝐵).

Thus 𝜇∗ is Lipschitz and in particular continuous.
Claim: The closure of 𝑅 under the pseudometric 𝑑 is a 𝜎-algebra.

• Clearly∅ ∈ 𝑅, so 𝑅 is nonempty.

• If 𝐴 ∈ 𝑅, then there exists a sequence 𝐴𝑛 ∈ 𝑅 such that 𝑑(𝐴𝑛, 𝐴) → 0.
Since 𝑑(𝑇 ⧵ 𝐴𝑛, 𝑇 ⧵ 𝐴) = 𝑑(𝐴𝑛, 𝐴), we see that also 𝑇 ⧵ 𝐴𝑛 → 𝑇 ⧵𝐴 ∈ 𝑅.

• If 𝐴, 𝐵 ∈ 𝑅, then there exist sequences (𝐴𝑛)∞𝑛=1, (𝐵𝑛)∞𝑛=1 of elements of 𝑅
such that 𝐴𝑛 → 𝐴 and 𝐵𝑛 → 𝐵. We have

𝑑(𝐴𝑛 ∪ 𝐵𝑛, 𝐴 ∪ 𝐵) = 𝜇∗((𝐴𝑛 ∪ 𝐵𝑛)∆(𝐴 ∪ 𝐵)) ≤ 𝜇∗((𝐴𝑛∆𝐴) ∪ (𝐵𝑛∆𝐵))
≤ 𝑑(𝐴𝑛, 𝐴) + 𝑑(𝐵𝑛, 𝐵),

which tends to 0 as 𝑛 → ∞, so 𝐴𝑛 ∪ 𝐵𝑛 → 𝐴 ∪ 𝐵 ∈ 𝑅. By de Morgan’s
law and the previous bullet we also have 𝐴𝑛 ∩ 𝐵𝑛 → 𝐴 ∩ 𝐵 ∈ 𝑅.

• For 𝐴, 𝐵, 𝐴𝑛, 𝐵𝑛 as above we also have

𝜇∗(𝐴 ∪ 𝐵) = lim
𝑛→∞
𝜇(𝐴𝑛 ∪ 𝐵𝑛) = lim

𝑛→∞
(𝜇(𝐴𝑛) + 𝜇(𝐵𝑛) − 𝜇(𝐴𝑛 ∩ 𝐵𝑛))

= 𝜇∗(𝐴) + 𝜇∗(𝐵) − 𝜇∗(𝐴 ∩ 𝐵),

so in particular for disjoint𝐴, 𝐵 ∈ 𝑅we have 𝜇∗(𝐴∪𝐵) = 𝜇∗(𝐴)+𝜇∗(𝐵).
Thus 𝜇∗ is finitely additive on 𝑅.

• Finally if (𝐴𝑛)∞𝑛=1 are disjoint elements of 𝑅, let 𝐵𝑛 ≔ ⋃
𝑛
𝑘=1 𝐴𝑘 (with the

convention 𝐵0 = ∅) and 𝐵 = ⋃∞𝑛=1 𝐴𝑛. For any 𝑛 ≥ 0 we have

𝜇∗(𝐵∆𝐵𝑛) = 𝜇∗(
∞

⋃
𝑘=𝑛+1
𝐴𝑘) ≥ 𝜇∗(

𝑚

⋃
𝑘=𝑛+1
𝐴𝑘) =

𝑚

∑
𝑘=𝑛+1
𝜇∗(𝐴𝑘)

for all𝑚 ≥ 𝑛 + 1. Thus by letting𝑚 →∞ we get

𝜇∗(𝐵∆𝐵𝑛) ≥
∞

∑
𝑘=𝑛+1
𝜇∗(𝐴𝑘)

and by subadditivity the inequality is actually an equality. Since 𝜇∗(𝐵)
is finite, we see that ∑∞𝑘=1 𝜇

∗(𝐴𝑘) < ∞, and thus

lim
𝑛→∞
𝜇∗(𝐵∆𝐵𝑛) = lim

𝑛→∞

∞

∑
𝑘=𝑛+1
𝜇∗(𝐴𝑘) = 0.
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Hence 𝐵𝑛 → 𝐵 ∈ 𝑅, which finishes the proof that 𝑅 is a 𝜎-algebra.

Claim: 𝜇∗ is a measure when restricted to 𝑅.

Let (𝐴𝑘)∞𝑘=1 be a sequence of disjoint elements of 𝑅. We saw above that
lim𝑛→∞⋃

𝑛
𝑘=1 𝐴𝑘 = ⋃

∞
𝑘=1 𝐴𝑘, and hence by the continuity and finite additiv-

ity of 𝜇∗ we have

𝜇∗(
∞

⋃
𝑘=1
𝐴𝑘) = lim

𝑛→∞
𝜇∗(
𝑛

⋃
𝑘=1
𝐴𝑘) = lim

𝑛→∞

𝑛

∑
𝑘=1
𝜇∗(𝐴𝑘) =

∞

∑
𝑘=1
𝜇∗(𝐴𝑘).

Since 𝜎(𝑅) ⊂ 𝑅, we have proven the following general extension result, apart
from the claim on uniqueness.

Theorem 1.35 (Carathéodory’s extension theorem). Let 𝑅 be an algebra on 𝑇
on which a countably additive map 𝜇∶ 𝑅 → [0, 1] has been defined with 𝜇(𝑇) =
1. Then 𝜇 extends uniquely to a probability measure on 𝜎(𝑅).

The uniqueness will follow from a general result that states that probability
measures that agree on a 𝜋-system 𝑃 also agree on the 𝜎-algebra generated by
𝑃.

Definition1.36. Let𝑃 be a collection of subsets of a set𝑇. Then𝑃 is a𝜋-system
if 𝐴, 𝐵 ∈ 𝑃 implies that 𝐴 ∩ 𝐵 ∈ 𝑃. ◆

Definition 1.37. Let 𝐷 be a collection of subsets of a set 𝑇. Then 𝐷 is a 𝜆-
system (or Dynkin-system) if

• ∅ ∈ 𝐷,

• if 𝐴 ∈ 𝐷, then 𝐴𝑐 ∈ 𝐷, and

• if (𝐴𝑛) is a countable family of disjoint elements of𝐷, then⋃𝑛 𝐴𝑛 ∈ 𝐷.

◆
These definitions can be thought of as splitting the conditions of a 𝜎-algebra

into two separate parts.

Lemma 1.38. Assume that G is a collection of subsets of a set 𝑇 that is both a
𝜋-system and a 𝜆-system. Then G is a 𝜎-algebra.

Proof. Exercise.

What makes the separation of conditions useful is that typically checking
that something is a 𝜋-system is easy, and for 𝜆-systems the fact that you only
need to check the countable union condition for disjoint sets typically plays
well together with the countable additive condition of measures.
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Just as with 𝜎-algebras, any intersection of 𝜆-systems is a 𝜆-system, and
hence for any family of subsets 𝑃 ∈ P (𝑇) one can define the smallest 𝜆-system
𝜆(𝑃) containing 𝑃 by taking the intersection of all 𝜆-systems that contain 𝑃.
The following theorem shows that an analogue of Lemma1.38 alsoworkswhen
taking 𝜆-extensions of 𝜋-systems.

Theorem 1.39 (𝜋-𝜆 theorem). If 𝑃 is a 𝜋-system, then 𝜆(𝑃) = 𝜎(𝑃).

Proof. It is enough to show that 𝜆(𝑃) is a 𝜋-system. We do this in three steps.

Step I: For all 𝐵 ∈ 𝜆(𝑃) the set G𝐵 ≔ {𝐴 ∈ 𝜆(𝑃) ∶ 𝐴 ∩ 𝐵 ∈ 𝜆(𝑃)} is a 𝜆-system.
We clearly have∅ ∈ G𝐵. Moreover, if 𝐴 ∈ G𝐵, then

𝐴𝑐 ∩ 𝐵 = (𝐴 ∪ 𝐵𝑐)𝑐 = ((𝐴 ∩ 𝐵) ∪ 𝐵𝑐)𝑐 ∈ 𝜆(𝑃)

so 𝐴𝑐 ∈ G𝐵. Finally if (𝐴𝑛)∞𝑛=1 is a sequence of disjoint elements of G, then

(
∞

⋃
𝑛=1
𝐴𝑛) ∩ 𝐵 =

∞

⋃
𝑛=1
(𝐴𝑛 ∩ 𝐵) ∈ 𝜆(𝑃),

so⋃∞𝑛=1 𝐴𝑛 ∈ G.

Step II: If 𝐴 ∈ 𝜆(𝑃) and 𝐵 ∈ 𝑃, then 𝐴 ∩ 𝐵 ∈ 𝜆(𝑃).
Let us fix 𝐵 ∈ 𝑃. In this case clearly 𝑃 ⊂ G𝐵, so we see that G𝐵 is a 𝜆-system
containing 𝑃 and contained in 𝜆(𝑃), so we must have G𝐵 = 𝜆(𝑃).

Step III: If 𝐴, 𝐵 ∈ 𝜆(𝑃), then 𝐴 ∩ 𝐵 ∈ 𝜆(𝑃).
This time we fix 𝐵 ∈ 𝜆(𝑃). By the second step we again see that 𝑃 ⊂ G𝐵 and
hence G𝐵 = 𝜆(𝑃), which proves the claim.

We are finally ready to show that probability measures are determined by
their values on a 𝜋-system generating the 𝜎-algebra.

Theorem 1.40. Assume that (𝑇,G) is a measurable space on which two prob-
ability measures 𝜇 and 𝜈 have been defined. Assume further that 𝑃 ⊂ G is a
𝜋-system with 𝜎(𝑃) = G and that 𝜇(𝐴) = 𝜈(𝐴) for all 𝐴 ∈ 𝑃. Then 𝜇 = 𝜈.

Proof. Let F ≔ {𝐴 ∈ G ∶ 𝜇(𝐴) = 𝜈(𝐴)}. Then by assumption 𝑃 ⊂ F and
by Theorem 1.39 it is enough to show that F is a 𝜆-system. Clearly ∅ ∈ F.
Moreover, if 𝐴 ∈ F then 𝐴𝑐 ∈ F, since

𝜇(𝐴𝑐) = 1 − 𝜇(𝐴) = 1 − 𝜈(𝐴) = 𝜈(𝐴𝑐).

Finally, if (𝐴𝑛)∞𝑛=1 is a sequence of disjoint elements of F, then

𝜇(
∞

⋃
𝑛=1
𝐴𝑛) =

∞

∑
𝑛=1
𝜇(𝐴𝑛) =

∞

∑
𝑛=1
𝜈(𝐴𝑛) = 𝜈(

∞

⋃
𝑛=1
𝐴𝑛),
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1. Foundations

so⋃∞𝑛=1 𝐴𝑛 ∈ F.

As a corollary the uniqueness part of Theorem 1.35 follows.
Extending measures is a somewhat delicate topic. Let us close the section

by giving two exercises for the curious reader willing to delve deeper into the
business.

Exercise 1.41 (Carathéodory’s condition). In the literature the 𝜎-algebra 𝑅 is
often defined via a characterisation called Carathéodory’s condition. A set 𝐴 ⊂
𝑇 is said to satisfy Carathéodory’s condition if

𝜇∗(𝐸) = 𝜇∗(𝐸 ⧵ 𝐴) + 𝜇∗(𝐸 ∩ 𝐴)

for all 𝐸 ⊂ 𝑇. Show that 𝐴 satisfies Carathéodory’s condition if and only if
𝐴 ∈ 𝑅.

Theadvantage of Carathéodory’s condition is that it perhapsmore easily adapts
to the situation where the measure we are extending is not finite. In that case one
needs multiple metrics to generate the right topology, see [4].

The disadvantage is that I find it a bit magical/opaque, and for finite measures
the closure-approach might actually be a bit faster. ◆

Exercise 1.42. Let𝑇 be some set and𝑃 ⊂ P (𝑇). We say that𝑃 is a prealgebra5
if the following conditions hold.

• We have 𝑇 ∈ 𝑃.

• If 𝐴, 𝐵 ∈ 𝑃, then 𝐴 ∩ 𝐵 and 𝐴 ⧵ 𝐵 can be expressed as finite unions of
disjoint sets in 𝑃.

Show that Theorem 1.35 still holds if we replace the assumption that 𝑃 is an
algebra by the assumption that 𝑃 is a prealgebra. ◆

One might also at first think that perhaps we could start with a measure 𝜇
defined on a 𝜋-system 𝑆 and then extend it to the 𝜎-algebra generated by 𝑆.
Indeed, in view of Theorem 1.40 this is a natural thought since the unique-
ness of the extension would automatically be guaranteed. Unfortunately the
information contained in a 𝜋-system does not guarantee the existence of an
extension, and indeed there are simple counter examples where an extension
does not exist.

Exercise 1.43. Construct a 𝜋-system 𝑆 on some set 𝑇 and a function 𝜇∶ 𝑆 →
[0,∞]which is countably additive, but which cannot be extended to ameasure
on 𝜎(𝑆). Here countably additive on 𝑆means that whenever (𝐴𝑛) is a countable

5This is nonstandard terminology. A similar structure has been used in the lecture notes [8],
where it was called a “semi-anneau”, but in English semiring usually means a slightly less
general structure.
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family of disjoint sets in 𝑆 such that their union 𝐴 is also in 𝑆, then 𝜇(𝐴) =
∑𝑛 𝜇(𝐴𝑛). ◆

1.6 Uniform measure on [0, 1]

Armed with infinitely many coin tosses it is easy to construct a uniform prob-
ability measure 𝜆 on ([0, 1],B), where B is the Borel 𝜎-algebra generated by
the closed intervals [𝑎, 𝑏] with 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. The measure 𝜆 is called the
Lebesgue measure on [0, 1].

Theorem 1.44.There exists a unique measure 𝜆 on ([0, 1],B) which satisfies
𝜆([0, 𝑡]) = 𝑡 for all 𝑡 ∈ [0, 1].

Proof. The uniqueness is clear since the intervals [0, 𝑡] with 𝑡 ∈ [0, 1] form a
𝜋-system that generates B.

To show the existence, let us consider a sequence (𝑋𝑛)∞𝑛=1 of independent
Bernoulli random variables constructed in the previous section and define the
random variable

𝑋 ≔
∞

∑
𝑛=1
𝑋𝑛2−𝑛.

Then 𝑋 ∈ [0, 1] always and 𝑋 is measurable since it is the limit of random
variables ∑𝑁𝑛=1 𝑋𝑛2

−𝑛 as𝑁 →∞.
Let us define 𝜆 ≔ 𝑋∗ℙ to be the law of 𝑋. Assume that 𝑡 ∈ [0, 1] has the

binary representation 𝑡 = ∑∞𝑛=1 𝑡𝑛2
−𝑛 with 𝑡𝑛 ∈ {0, 1}. Since

𝜆({𝑡}) = ℙ[𝑋 = 𝑡] = 0,

we have 𝜆([0, 𝑡]) = 𝜆([0, 𝑡)), and

𝜆([0, 𝑡)) = ℙ[𝑋 < 𝑡] = ℙ[{𝑋𝑖 < 𝑡𝑖 in the first index 𝑖 where𝑋𝑖 ≠ 𝑡𝑖}]

=
∞

∑
𝑖=1
ℙ[𝑋𝑖 < 𝑡𝑖]

𝑖−1

∏
𝑗=1
ℙ[𝑋𝑗 = 𝑡𝑗] =

∞

∑
𝑖=1
2−𝑖𝑡𝑖 = 𝑡.

From the proof we also see the following.

Corollary 1.45.There exists a probability space on which one can define a ran-
dom variable𝑋 with uniform distribution on the interval [0, 1].

Note that one could also ask for a random variable 𝑈 which is uniform in
the open interval (0, 1). This can be obtained by setting

𝑈(𝜔) = {
𝑋(𝜔), if𝑋(𝜔) ∉ {0, 1}
1
2 , otherwise

.
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The variables 𝑋 and 𝑈 have actually the same law since we are just redefining
𝑋 in a set of measure 0.

1.7 Distribution functions and arbitrary laws on ℝ

Definition 1.46. Let𝑋 be a real-valued random variable. The cumulative dis-
tribution function (c.d.f.) 𝐹𝑋 ∶ ℝ → [0, 1] of𝑋 is defined by

𝐹𝑋(𝑥) ≔ ℙ[𝑋 ≤ 𝑥]. ◆

The basic properties of 𝐹𝑋 are given in the following lemma.

Lemma 1.47. Let𝑋 be a real-valued random variable with c.d.f. 𝐹𝑋. Then

• 𝐹𝑋 increases monotonically from 0 to 1 as 𝑥 goes from −∞ to∞.

• 𝐹𝑋 is right-continuous.

Proof. Exercise.

An important aspect of the c.d.f. is that it determines the law of the random
variable.

Theorem 1.48. Let 𝑋 and 𝑌 be two random variables with 𝐹𝑋 = 𝐹𝑌. Then 𝑋
and 𝑌 have the same law.

Proof. Let 𝑃 be the 𝜋-system formed by the closed intervals (−∞, 𝑥], 𝑥 ∈ ℝ.
By Lemma 1.7 we have 𝜎(𝑃) = B, where B is the Borel 𝜎-algebra on ℝ. By
definition the law of a random variable 𝑋 is the measure 𝑋∗ℙ defined on B,
and we have 𝑋∗ℙ((−∞, 𝑥]) = 𝐹𝑋(𝑥). Thus by Theorem 1.40 if 𝐹𝑋 = 𝐹𝑌, the
measures𝑋∗ℙ and 𝑌∗ℙ agree on 𝑃 and hence on B.

We will next look at going from c.d.f.’s to random variables.

Theorem 1.49. Let 𝐹∶ ℝ → [0, 1] be a right-continuous monotonically increas-
ing function with lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1. Then there exists a
probability space on which one can define a random variable with c.d.f. 𝐹.

Proof. Let us define the quantile function 𝐺(𝑡) ≔ inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝑡}
for 𝑡 ∈ (0, 1) and let 𝑈 be a uniform random variable on (0, 1). Then by the
right-continuity of 𝐹 the random variable 𝐺(𝑈) satisfies

ℙ[𝐺(𝑈) ≤ 𝑡] = ℙ[inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝑈} ≤ 𝑡] = ℙ[𝐹(𝑡) ≥ 𝑈] = 𝐹(𝑡)

so 𝐺(𝑈) has the right c.d.f.

Let us close this section with the following helpful result.
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Lemma 1.50. One can simultaneously construct on a common probability space
a countable number of independent randomvariables (𝑋𝑛)∞𝑛=1 with c.d.f.s (𝐹𝑛)∞𝑛=1.

Proof. Exercise.
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Spaces of random variables

2.1 Borel–Cantelli lemma

Given an infinite sequences of events one often wants to know whether in-
finitely many of them happen, or even more strongly whether there are only
finitely many events that do not happen.

Definition 2.1. Let (𝐴𝑛)∞𝑛=1 be a sequence of events.

• The limsup event lim sup𝑛→∞ 𝐴𝑛 = ⋂
∞
𝑛=1⋃
∞
𝑘=𝑛 𝐴𝑘 is the event that in-

finitely many of the events 𝐴𝑛 happen simultaneously.

• The liminf event lim inf𝑛→∞ 𝐴𝑛 = ⋃
∞
𝑛=1⋂
∞
𝑘=𝑛 𝐴𝑘 is the event that even-

tually (starting from some random index 𝑛0) all the events 𝐴𝑛 happen.

◆
The Borel–Cantelli lemma states that if the probabilities of the events𝐴𝑛 de-

crease quickly enough, then with probability one only finitely many 𝐴𝑛 hap-
pen.

Theorem 2.2 (Borel–Cantelli lemma). Let (𝐴𝑛)∞𝑛=1 be events. If ∑
∞
𝑛=1 ℙ[𝐴𝑛] <

∞, then ℙ[lim sup𝑛→∞ 𝐴𝑛] = 0.

Proof. Since∑∞𝑛=1 ℙ[𝐴𝑛] < ∞, for any 𝜀 > 0 we may pick an 𝑛0 ∈ ℕ such that
∑∞𝑛=𝑛0 ℙ[𝐴𝑛0 ] < 𝜀. Then

ℙ[lim sup
𝑛→∞
𝐴𝑛] ≤ ℙ[

∞

⋃
𝑘=𝑛0

𝐴𝑘] ≤
∞

∑
𝑘=𝑛0

ℙ[𝐴𝑘] < 𝜀.

As 𝜀 was arbitrary, this proves the claim.

There is also a partial converse of this lemma in the case of independent
events.

Theorem 2.3 (Second Borel–Cantelli lemma). Let (𝐴𝑛)∞𝑛=1 be a sequence of in-
dependent events. If ∑∞𝑛=1 ℙ[𝐴𝑛] = ∞, then ℙ[lim sup𝑛→∞ 𝐴𝑛] = 1.

Proof. Exercise.
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Example 2.4 (Records – taken from [3]). Let𝑋1,… ,𝑋𝑛 be the winning scores
in year 𝑛 of some annual sports competition. We assume that 𝑋1,… ,𝑋𝑛 are
independent and identically distributed and that their common c.d.f. is con-
tinuous.

Let 𝐸𝑛 ≔ {𝑋𝑛 ≥ max(𝑋1,… ,𝑋𝑛−1)} be the event that a new record is made
in year 𝑛. We leave it as an exercise to check thatℙ[𝐸𝑛] =

1
𝑛 and that 𝐸1, 𝐸2,…

are independent.
Then since ∑∞𝑛=1 ℙ[𝐸𝑛] = ∑

∞
𝑛=1
1
𝑛 = ∞, we see that new records are made

infinitely many times.
On the other hand this does not happen too often: Let 𝐹𝑛 = 𝐸𝑛 ∩ 𝐸𝑛+1 be

the event that records are broken in two consecutive years. Then

∞

∑
𝑛=1
ℙ[𝐹𝑛] =

∞

∑
𝑛=1

1
𝑛(𝑛 + 1)

< ∞,

so with probability one this happens only finitely many times. ◆

2.2 The space 𝐿0 and convergence in probability

Let 𝑈 be a uniform random number on the interval [0, 1]. Then we saw that
for any fixed 𝑥 ∈ [0, 1] we have ℙ[𝑈 = 𝑥] = 0. Thus it follows that

ℙ[𝑈 ∈ [0, 1]] = ℙ[𝑈 ∈ [0, 1] ⧵ {1/2}] = 1.

In fact evenℙ[𝑈 ∈ [0, 1] ⧵ℚ] = 1, since we are only removing countably many
points. All three events {𝑈 ∈ [0, 1]}, {𝑈 ∈ [0, 1] ⧵ {1/2}} and {𝑈 ∈ [0, 1] ⧵ ℚ}
are therefore equivalent in a probabilistic sense. This motivates the following
definition.

Definition 2.5. Let 𝐴 be an event.

• We say that 𝐴 happens almost surely (a.s.) if ℙ[𝐴] = 1 and almost
never if ℙ[𝐴] = 0.

• In the latter case 𝐴 is called a null set of ℙ.

• If 𝐴 = 𝛺, then 𝐴 happens surely. ◆

With this terminology established, let us turn to the main topic of this sec-
tion: How do we tell two random variables apart?

Certainly if two random variables 𝑋 and 𝑌 are equal almost surely, there
should not be any difference between them in a probabilistic sense. Thus it is
natural to define the quotient space

𝐿0 ≔ {𝑋∶ 𝛺 → ℝ ∶ 𝑋measurable}/∼,
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2. Spaces of random variables

where ∼ is the equivalence relation that identifies random variables 𝑋 and 𝑌
such that ℙ[𝑋 ≠ 𝑌] = 0. We will define other 𝐿𝑝-spaces later on for 𝑝 > 0, but
for now let us just assume this notation.

Remark. It is important to note that the space 𝐿0 depends not only on the 𝜎-
algebra F but also on the measure ℙ. Thus two random variables which were
equivalent under ℙ might not be equivalent under another probability mea-
sure ℙ̃ and vice versa. With some abuse of terminology we will however still
continue calling the elements of 𝐿0 random variables. ◆

The following exercise shows that 𝐿0 is a vector space.

Exercise 2.6. Let 𝑋,𝑋′, 𝑌, 𝑌′ be random variables such that 𝑋 = 𝑋′ and 𝑌 =
𝑌′ almost surely. Show that 𝑋 + 𝑌 = 𝑋′ + 𝑌′ almost surely and also that if
𝑐 ∈ ℝ, then 𝑐𝑋 = 𝑐𝑋′ almost surely. ◆

Thus identifying randomvariablesworkmostly very nicely. One has to how-
ever be a little bit more careful when taking limits.

Proposition 2.7. Let𝑋𝑛 be random variables that converge almost surely. Then
there exists a random variable 𝑋 such that 𝑋𝑛

𝑎.𝑠.
→ 𝑋, and the same holds if

we replace each 𝑋𝑛 with a random variable 𝑋′𝑛
𝑎.𝑠.
= 𝑋𝑛 and 𝑋 with a variable

𝑋′
𝑎.𝑠.
= 𝑋. Thus almost sure convergence is well-defined for elements of 𝐿0.

Proof. Exercise.

Remark. Proposition 2.7 has some subtlety to it so for clarity let us note the
following.

• It might be good to write out what we mean when we say that 𝑋𝑛 con-
verges almost surely. Quite literally, this means that the set {𝜔 ∈ 𝛺 ∶
lim𝑛→∞ 𝑋𝑛(𝜔) exists} has probability 1 (one can show that the set is al-
ways measurable).

Similarly when we say that 𝑋𝑛
𝑎.𝑠.
→ 𝑋, we mean that the set {𝜔 ∈ 𝛺 ∶

lim𝑛→∞ 𝑋𝑛(𝜔) = 𝑋(𝜔)} is measurable and has probability 1.

• The above proposition does not say that if𝑋𝑛 converges almost surely to
some function𝑋 that then𝑋 is measurable. This holds in general if and
only if ℙ is complete, meaning that if 𝐴 has ℙ[𝐴] = 0, then all subsets
𝐵 ⊂ 𝐴 are measurable and ℙ[𝐵] = 0. ◆

By moving from pointwise defined random variables to equivalence classes
in 𝐿0 we have thus retained the nice vector space structure and even pointwise
limits work nicely when they are replaced by almost sure limits. On the other
hand we have ensured that all the elements in 𝐿0 are at least honestly different
(without the extra redundancy caused by a.s. equal random variables) and we
can now turn to the question of how different.
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2. Spaces of random variables

A natural way to compare two random variables 𝑋,𝑌 ∈ 𝐿0 would be to ask
how big is ℙ[|𝑋 − 𝑌| > 𝜆] for any given 𝜆 > 0. Via a nice trick this kind of
thinking can even be refined into an honest metric.

Definition 2.8. The Ky Fan metric 𝑑𝐾𝐹 ∶ 𝐿0 × 𝐿0 → [0, 1] is defined by

𝑑𝐾𝐹(𝑋, 𝑌) ≔ inf{𝜀 ≥ 0 ∶ ℙ[|𝑋 − 𝑌| > 𝜀] ≤ 𝜀}

for𝑋,𝑌 ∈ 𝐿0. ◆

Theorem 2.9.The pair (𝐿0, 𝑑𝐾𝐹) is a complete metric space.

Proof. We leave showing that 𝑑𝐾𝐹 is a metric as an exercise.
Let us show the completeness. Assume that (𝑋𝑛)∞𝑛=1 is a Cauchy sequence in
𝐿0. Since it is enough to show that 𝑋𝑛 has a converging subsequence, we may
assume that 𝑑𝐾𝐹(𝑋𝑛, 𝑋𝑚) < 2−𝑚 for 𝑛 ≥ 𝑚 ≥ 1. Hence we get in particular
that ℙ[|𝑋𝑛+1 − 𝑋𝑛| > 2−𝑛] ≤ 2−𝑛 for all 𝑛 ≥ 1. By Borel–Cantelli thus almost
surely |𝑋𝑛+1 − 𝑋𝑛| ≤ 2−𝑛 for 𝑛 large enough, and we see that the series

𝑋1 +
∞

∑
𝑛=1
(𝑋𝑛+1 − 𝑋𝑛) ≕ 𝑋

converges almost surely. Finally we note that 𝑋𝑛
𝑎.𝑠.
→ 𝑋 implies that for any

𝜀 > 0 we have
ℙ[⋂
𝑛0

⋃
𝑛≥𝑛0

{|𝑋𝑛 − 𝑋| > 𝜀}] = 0.

Hence wemay pick for any 𝜀 > 0 an integer 𝑛0 so large thatℙ[|𝑋𝑛−𝑋| > 𝜀] ≤ 𝜀
for 𝑛 ≥ 𝑛0. This shows that 𝑑𝐾𝐹(𝑋𝑛, 𝑋) ≤ 𝜀 and that𝑋𝑛 converges to𝑋 under
the metric 𝑑𝐾𝐹.

From the above proof we also see the following important important facts.

Proposition 2.10. Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables.

• If 𝑋𝑛 converges in 𝐿0, then it has a subsequence that converges almost
surely.

• If𝑋𝑛 converges almost surely, then it converges in 𝐿0.

Convergence in the metric 𝑑𝐾𝐹 is often called convergence in probability,
and it is equivalent to the following definition.

Definition 2.11. Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables. We say that
𝑋𝑛 converge in probability to a random variable𝑋 if

lim
𝑛→∞
ℙ[|𝑋𝑛 − 𝑋| > 𝜀] = 0
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for all 𝜀 > 0. ◆

Proposition 2.12. A sequence 𝑋𝑛 of random variables converges in probability
to a random variable𝑋 if and only if 𝑑𝐾𝐹(𝑋𝑛, 𝑋) → 0.

Proof. Assume first that𝑋𝑛 converge in probability to𝑋. Fix 𝜀 > 0 and choose
𝑛0 so large that ℙ[|𝑋𝑛 − 𝑋| > 𝜀] ≤ 𝜀 for all 𝑛 ≥ 𝑛0. Then by definition

𝑑𝐾𝐹(𝑋𝑛, 𝑋) = inf{𝜀 ∶ ℙ[|𝑋𝑛 − 𝑋| > 𝜀] ≤ 𝜀} ≤ 𝜀

for 𝑛 ≥ 𝑛0. Since 𝜀 was arbitrary we see that 𝑑𝐾𝐹(𝑋𝑛, 𝑋) → 0.
Conversely, assume that 𝑑𝐾𝐹(𝑋𝑛, 𝑋) → 0. We want to show that

lim
𝑛→∞
ℙ[|𝑋𝑛 − 𝑋| > 𝜀] = 0

for any fixed 𝜀 > 0. Notice that for any 𝛿 ∈ (0, 𝜀) there exists 𝑛0 ≥ 1 such
that for all 𝑛 ≥ 𝑛0 there exists 𝑠 < 𝛿 for which ℙ[|𝑋𝑛 − 𝑋| > 𝑠] ≤ 𝑠. But this
also implies that ℙ[|𝑋𝑛 − 𝑋| > 𝜀] ≤ ℙ[|𝑋𝑛 − 𝑋| > 𝑠] ≤ 𝑠 ≤ 𝛿, so since 𝛿 was
arbitrary, we have that𝑋𝑛

ℙ
→ 𝑋.

We will next consider approximation in 𝐿0 by simple random variables.

Definition 2.13. We say that a random variable 𝑋 ∈ 𝐿0 is simple if it has a
representative that is simple according to Definition 1.26, and we denote the
set of all simple variables in 𝐿0 by 𝑆. ◆

It is easy to check that 𝑆 is closed under addition and scalar multiplication,
so 𝑆 is actually a vector subspace of 𝐿0. Since we know (by Proposition 1.27)
that for any random variable𝑋 there exists a sequence of simple random vari-
ables converging to𝑋 almost surely, and that almost sure convergence implies
convergence in probability, we obtain the following.

Proposition 2.14.The set 𝑆 is dense in 𝐿0.
Let us close this section with the following useful result, which also shows

that convergence in probability only depends on the null sets of the measure.

Proposition 2.15. Let (𝑋𝑛)𝑛=1 and 𝑋 be random variables. Then 𝑋𝑛
ℙ
→ 𝑋

if and only if for every subsequence (𝑋𝑛𝑘 )
∞
𝑘=1 there exists a further subsequence

(𝑋𝑛𝑘𝑚 )
∞
𝑚=1 such that𝑋𝑛𝑘𝑚

𝑎.𝑠.
→ 𝑋.

Proof. If 𝑋𝑛
ℙ
→ 𝑋, then every subsequence of it converges also in probability,

hence has a further subsequence that converges almost surely.
Conversely, assume that almost surely converging sub-sub-sequences exist

but 𝑋𝑛 does not converge in probability to 𝑋. Then there exist 𝜀 > 0 and a
subsequence (𝑋𝑛𝑘 )

∞
𝑘=1 for whichℙ[|𝑋𝑛𝑘 −𝑋| > 𝜀] > 𝜀 for all 𝑘 ≥ 1. However by
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assumption there exists a further subsequence (𝑋𝑛𝑘𝑚 )
∞
𝑚=1 such that𝑋𝑛𝑘𝑚

𝑎.𝑠.
→ 𝑋,

hence𝑋𝑛𝑘𝑚
ℙ
→ 𝑋, which is a contradiction.

As a corollary we easily obtain the following.

Proposition 2.16. Assume that𝑋𝑛
ℙ
→ 𝑋 and 𝑌𝑛

ℙ
→ 𝑌. Then the following hold:

• 𝑋𝑛 + 𝑌𝑛
ℙ
→ 𝑋 + 𝑌

• 𝑋𝑛𝑌𝑛
ℙ
→ 𝑋𝑌

• If 𝑌𝑛, 𝑌 ≠ 0 almost surely, then𝑋𝑛/𝑌𝑛
ℙ
→ 𝑋/𝑌.

• If 𝑔∶ ℝ → ℝ is continuous, then 𝑔(𝑋𝑛)
ℙ
→ 𝑔(𝑋).

Proof. Exercise.

2.3 The space 𝐿∞

The next space we will take a look at is the space 𝐿∞, which consists of almost
surely bounded random variables.

In 𝐿0 the metric mostly ignored the size of the difference between two ran-
dom variables – it was enough that they were close in a large set but outside
that set they could differ a lot. In 𝐿∞ on the other hand the maximal difference
is all that matters.

Definition 2.17. We define

𝐿∞ ≔ {𝑋 ∈ 𝐿0 ∶ ‖𝑋‖𝐿∞ < ∞},

where
‖𝑋‖𝐿∞ ≔ inf{𝜆 ≥ 0 ∶ ℙ[|𝑋| > 𝜆] = 0}. ◆

Theorem 2.18.The space (𝐿∞, ‖ ⋅ ‖𝐿∞ ) is a Banach space.1

Proof. It is clear that ‖𝑋‖𝐿∞ does not depend on the representative of𝑋 ∈ 𝐿0.
To check that ‖ ⋅ ‖𝐿∞ is a norm, let us show the triangle inequality and leave

the other properties for the reader to check. We have

ℙ[|𝑋 + 𝑌| > ‖𝑋‖𝐿∞ + ‖𝑌‖𝐿∞ ] ≤ ℙ[|𝑋| > ‖𝑋‖𝐿∞ or |𝑌| > ‖𝑌‖𝐿∞ ]
≤ ℙ[|𝑋| > ‖𝑋‖𝐿∞ ] + ℙ[|𝑌| > ‖𝑌‖𝐿∞ ] = 0,

1Recall that Banach space means a complete normed space.

33



2. Spaces of random variables

and hence
‖𝑋‖𝐿∞ + ‖𝑌‖𝐿∞ ∈ {𝜆 ≥ 0 ∶ ℙ[|𝑋| > 𝜆 = 0]},

whence
‖𝑋 + 𝑌‖𝐿∞ ≤ ‖𝑋‖𝐿∞ + ‖𝑌‖𝐿∞ .

Let us then show completeness. Assume that 𝑋𝑛 is a Cauchy sequence in
𝐿∞. Then for all 𝑛,𝑚 ≥ 1 the events 𝐴𝑛 ≔ {|𝑋𝑛| ≤ ‖𝑋𝑛‖𝐿∞ } and 𝐴𝑛,𝑚 ≔
{|𝑋𝑛 − 𝑋𝑚| ≤ ‖𝑋𝑛 − 𝑋𝑚‖𝐿∞ } have probability 1 and thus also the event

𝐴 ≔
∞

⋂
𝑛=1
𝐴𝑛 ∩

∞

⋂
𝑛,𝑚=1
𝐴𝑛,𝑚

has probability 1. For all 𝜔 ∈ 𝐴 the sequence (𝑋𝑛(𝜔))∞𝑛=1 is Cauchy in ℝ since
we have the inequality

|𝑋𝑛(𝜔) − 𝑋𝑚(𝜔)| ≤ ‖𝑋𝑛 − 𝑋𝑚‖𝐿∞ (𝑛,𝑚 ≥ 1) (2.1)

and 𝑋𝑛 is Cauchy in 𝐿∞. By the completeness of ℝ we therefore see that
𝑋𝑛 converges a.s., and by Proposition 2.7 there exists a measurable 𝑋 such
that 𝑋𝑛

𝑎.𝑠.
→ 𝑋. In fact, 𝑋 has a pointwise defined representative given by

𝑋(𝜔) ≔ lim𝑛→∞ 𝑋𝑛(𝜔)𝟙𝐴(𝜔) andwewill workwith this representative. More-
over, since the upper bound (2.1) is uniform in 𝜔, we can pick 𝑛0 so large that
‖𝑋𝑛0 − 𝑋𝑚‖𝐿∞ ≤ 1 for all𝑚 ≥ 𝑛0 and then

|𝑋(𝜔)| = lim
𝑚→∞
|𝑋𝑚(𝜔) − 𝑋𝑛0 (𝜔) + 𝑋𝑛0 (𝜔)| ≤ ‖𝑋𝑛0‖∞ + 1

for all 𝜔 ∈ 𝐴, and thus𝑋 ∈ 𝐿∞. Similarly

|𝑋𝑛(𝜔) − 𝑋(𝜔)| = |𝑋𝑛(𝜔) − lim
𝑚→∞
𝑋𝑚(𝜔)| ≤ sup

𝑚≥𝑛
‖𝑋𝑛 − 𝑋𝑚‖𝐿∞ → 0

uniformly for 𝜔 ∈ 𝐴 as 𝑛 → ∞, so lim𝑛→∞ ‖𝑋𝑛 − 𝑋‖𝐿∞ = 0.

From the proof above we see that the convergence in 𝐿∞ is very strong and
implies in particular convergence almost surely.

Proposition 2.19. If𝑋𝑛 → 𝑋 in 𝐿∞, then𝑋𝑛
𝑎.𝑠.
→ 𝑋.

By looking at the proof of Proposition 1.27 one can easily check that the
same proof also shows the following.

Proposition 2.20.The set of simple random variables 𝑆 is dense in 𝐿∞.
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2.4 Expectation and the space 𝐿1

Our next goal is to define the Lebesgue integral∫
𝛺
𝑋𝑑ℙ for so called integrable

random variables𝑋. The space of integrable random variables is also called the
𝐿1-space.

In the case of a probability space the integral is called expectation and we
use the notation 𝔼[𝑋] ≔ ∫

𝛺
𝑋𝑑ℙ. We will later see how to define the integral

for other measure spaces.
We will construct the space 𝐿1 and the expectation map 𝔼∶ 𝐿1 → ℝ by first

defining 𝔼[𝑋] on simple random variables 𝑋 ∈ 𝑆 and then approximating
other random variables by elements of 𝑆.

Let𝑋 ∈ 𝑆 be a simple random variable and fix a representative𝑋0 of𝑋 that
takes only finitely many values. Then we have

𝑋0 =
𝑛

∑
𝑘=1
𝑎𝑘𝟙𝐸𝑘

where 𝑛 is the number of distinct values attained by 𝑋0, 𝑎𝑘 ∈ ℝ are the values
themselves and 𝐸𝑘 = 𝑋−10 ({𝑎𝑘}). We then define

𝔼[𝑋] ≔
𝑛

∑
𝑘=1
𝑎𝑘ℙ[𝐸𝑘].

We note that this definition does not depend on the representative 𝑋0, since
the sets 𝐸𝑘 with positive measure can only differ by a set of measure 0 between
representatives.

Two basic properties of 𝔼 for simple functions are given in the following
lemma.

Lemma 2.21. Let𝑋,𝑌 ∈ 𝑆. The expectation satisfies the following.

• Linearity: 𝔼[𝑋 + 𝑌] = 𝔼[𝑋] + 𝔼[𝑌] and 𝔼[𝑐𝑋] = 𝑐𝔼[𝑋] for 𝑐 ∈ ℝ.

• (A special case of) Hölder’s inequality: |𝔼[𝑋𝑌]| ≤ 𝔼[|𝑋|]‖𝑌‖𝐿∞ .

Remark. Above 𝔼[|𝑋|] is well-defined since𝑋 ∈ 𝑆 ⇒ |𝑋| ∈ 𝑆. ◆

Proof. Linearity: The scalar multiplication part is clear. For the claim on the
sum assume that 𝑋 and 𝑌 have the representations 𝑋 = ∑𝑛𝑘=1 𝑎𝑘𝟙𝐸𝑘 and 𝑌 =
∑𝑚𝑘=1 𝑏𝑘𝟙𝐷𝑘 . Then the sets 𝐸𝑗 ∩ 𝐷𝑘 partition 𝛺 and on the part 𝐸𝑗 ∩ 𝐷𝑘 the
random variable𝑋 + 𝑌 takes the value 𝑎𝑗 + 𝑏𝑘. Hence

𝔼[𝑋 + 𝑌] = ∑
𝑗,𝑘
(𝑎𝑗 + 𝑏𝑘)ℙ[𝐸𝑗 ∩ 𝐷𝑘] = ∑

𝑗,𝑘
𝑎𝑗ℙ[𝐸𝑗 ∩ 𝐷𝑘] + ∑

𝑗,𝑘
𝑏𝑘ℙ[𝐸𝑗 ∩ 𝐷𝑘]

= 𝔼[𝑋] + 𝐸[𝑌].
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Hölder’s inequality: We can w.l.o.g. assume that ℙ[𝐷𝑘] ≠ 0 for all 𝑘, and
then

|𝔼[𝑋𝑌]| = |∑
𝑗,𝑘
𝑎𝑗𝑏𝑘ℙ[𝐸𝑗 ∩ 𝐷𝑘]| ≤ ∑

𝑗,𝑘
|𝑎𝑗|ℙ[𝐸𝑗 ∩ 𝐷𝑘]max{|𝑏𝑘| ∶ 𝑘 = 1,… ,𝑚}

= 𝔼[|𝑋|]‖𝑌‖𝐿∞ .

The above theorem shows that 𝔼 is a linear functional on 𝑆 which satisfies
the triangle inequality |𝔼[𝑋]| ≤ 𝔼[|𝑋|] for𝑋 ∈ 𝑆 (substitute 𝑌 = 1 in Hölder’s
inequality). Note also that from the triangle inequality one also gets mono-
tonicity: If𝑋 ≤ 𝑌, then 𝔼[𝑌 − 𝑋] ≥ |𝔼[𝑌 − 𝑋]| ≥ 0, so 𝔼[𝑋] ≤ 𝔼[𝑌].

Let us define the norm ‖ ⋅ ‖𝐿1 ∶ 𝑆 → [0,∞) by setting ‖𝑋‖𝐿1 = 𝔼[|𝑋|]. It is
indeed a norm since by monotonicity we have the triangle inequality

‖𝑋 + 𝑌‖𝐿1 = 𝔼[|𝑋 + 𝑌|] ≤ 𝔼[|𝑋| + |𝑌|] = ‖𝑋‖𝐿1 + ‖𝑌‖𝐿1

and the other required properties are easy to see from the definition of 𝔼.
We have now defined a normed space (𝑆, ‖ ⋅ ‖𝐿1 ). Our strategy next is to

take the Banach space completion of 𝑆 under the norm ‖ ⋅ ‖𝐿1 and show that it
can in fact be viewed in a natural way as a subset of 𝐿0, a subset which we will
then call 𝐿1. Let us begin by recalling the following basic theorem regarding
completions of normed spaces.

Theorem. Let (𝑉, ‖ ⋅ ‖) be a normed vector space over ℝ. Then there exists a
Banach space �̂� and a mapping 𝜄 ∶ 𝑉 → �̂� such that 𝜄 is a linear isometry and
𝜄(𝑉) is dense in �̂�. The space �̂� is called a completion of 𝑉 and it is unique up
to isometric isomorphisms.

Moreover, if 𝑓∶ 𝑉 → 𝑈 is a uniformly continuous map to a complete metric
space 𝑈, then 𝑓 extends uniquely to a uniformly continuous map ̂𝑓 ∶ �̂� → 𝑈.

We will take this result for granted. If the reader has not seen it before or
just wants to refresh their memory, we direct them to Appendix A for a proof
of the second part and Appendix B for a proof of the existence of completions
of normed spaces.

Let now ̂𝑆 be any completion of 𝑆 under the norm ‖⋅‖𝐿1 and denote the norm
in ̂𝑆 by ‖ ⋅ ‖ ̂𝑆. We begin by noting that the Ky Fan metric is weaker than the
𝐿1-norm.

Lemma 2.22. If𝑋,𝑌 ∈ 𝑆, then 𝑑𝐾𝐹(𝑋, 𝑌) ≤ √𝔼[|𝑋 − 𝑌|].

Proof. Exercise. Hint: Show that ℙ[|𝑍| > 𝜀] ≤ 𝜀−1𝔼[|𝑍|] for all 𝑍 ∈ 𝑆 and
𝜀 > 0 and apply this in the case 𝑍 = 𝑋 − 𝑌.

In particular the identity map 𝑆 → 𝐿0 is linear and continuous (and hence
uniformly continuous), so it admits a continuous linear extension 𝑇∶ ̂𝑆 → 𝐿0.
This is illustrated in the following commutative diagram:
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(𝑆, ‖ ⋅ ‖𝐿1 ) (𝐿0, 𝑑𝐾𝐹)

( ̂𝑆, ‖ ⋅ ‖ ̂𝑆)

𝜄

𝑖𝑑

𝑇

Our next task is to show that 𝑇 is injective – this will allow us to define
𝐿1 ≔ 𝑇( ̂𝑆) and view 𝐿1 as a copy of ̂𝑆 sitting inside 𝐿0. For this we will need the
following lemma.

Lemma 2.23. Let (𝑋𝑛)∞𝑛=1 be a sequence of simple random variables which con-
verges in probability to 0 and also such that 𝜄(𝑋𝑛) converges in ̂𝑆 to some �̂� ∈ ̂𝑆.
Then �̂� = 0.

Proof. It is enough to show that ‖𝑋𝑛‖𝐿1 → 0. For any𝑚 ≥ 1 and 𝜀 > 0 we have

lim sup
𝑛→∞
𝔼[|𝑋𝑛|] ≤ lim sup

𝑛→∞
𝔼[|𝑋𝑛|𝟙{|𝑋𝑛|≤𝜀}] + lim sup

𝑛→∞
𝔼[|𝑋𝑛|𝟙{|𝑋𝑛|>𝜀}]

≤ 𝜀 + lim sup
𝑛→∞
𝔼[|𝑋𝑛 − 𝑋𝑚|] + ‖𝑋𝑚‖𝐿∞ lim sup

𝑛→∞
ℙ[|𝑋𝑛| > 𝜀]

= 𝜀 + lim sup
𝑛→∞
‖𝜄(𝑋𝑛) − 𝜄(𝑋𝑚)‖ ̂𝑆 = 𝜀 + ‖�̂� − 𝑋𝑚‖ ̂𝑆.

Letting𝑚 →∞ and 𝜀 → 0 on the right hand side shows the claim.

Using the above lemma it is easy to see that 𝑇 is injective: Since 𝑇 is linear,
it is enough to show that if 𝑇(�̂�) = 0 for some �̂� ∈ ̂𝑆 then �̂� = 0. But this is
now clear since for any such �̂� we may pick a sequence (𝑋𝑛)∞𝑛=1 in 𝑆 such that
𝜄(𝑋𝑛) → �̂� in ̂𝑆 and then by assumption

0 = 𝑇(�̂�) = lim
𝑛→∞
𝑇(𝜄(𝑋𝑛)) = lim

𝑛→∞
𝑋𝑛,

where the limit is in probability, so by the lemma above �̂� = 0.
We have thus shown that themap𝑇 is an injection that continuously embeds
̂𝑆 into 𝐿0 and we can define

𝐿1 ≔ 𝑇( ̂𝑆).

We also extend the definition of ‖ ⋅ ‖𝐿1 from 𝑆 to 𝐿1 by setting

‖𝑋‖𝐿1 ≔ ‖𝑇−1(𝑋)‖ ̂𝑆

for all𝑋 ∈ 𝐿1 ⧵ 𝑆.
This way 𝐿1 has now become another isomorphic completion of 𝑆 and we

may forget about ̂𝑆.
At this stage it is probably a good idea to pause a little and collect what we

have actually shown into a theorem.
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Theorem 2.24.There exists a unique Banach space (𝐿1, ‖ ⋅ ‖𝐿1 ) satisfying the
following properties:

• We have 𝑆 ⊂ 𝐿1 ⊂ 𝐿0.

• 𝐿1 is a completion of 𝑆 under the norm ‖ ⋅ ‖𝐿1 .

• 𝐿1 is continuously embedded in 𝐿0, or in other words: convergence in 𝐿1
implies convergence in probability.

Let us also introduce one more term.

Definition 2.25. A random variable𝑋 ∈ 𝐿0 is called integrable if𝑋 ∈ 𝐿1. ◆
We next note that also the expectation can be extended from 𝑆 to 𝐿1.

Proposition 2.26.The map 𝔼∶ 𝑆 → ℝ extends uniquely to a continuous linear
map 𝐿1 → ℝ.

Moreover, Hölder’s inequality still holds: if𝑋 ∈ 𝐿1 and 𝑌 ∈ 𝐿∞, then𝑋𝑌 ∈ 𝐿1
and

|𝔼[𝑋𝑌]| ≤ ‖𝑋‖𝐿1‖𝑌‖𝐿∞ .

Proof. The extension is clear since 𝐿1 is a completion of 𝑆 and 𝔼 is linear and
continuous on 𝑆 under the ‖ ⋅ ‖𝐿1 -norm.

For the second claim, let (𝑋𝑛)∞𝑛=1 and (𝑌𝑛)∞𝑛=1 be two sequences of simple
random variables such that𝑋𝑛 → 𝑋 in 𝐿1 and 𝑌𝑛 → 𝑌 in 𝐿∞. By Lemma 2.21
we have

|𝔼[𝑋𝑛𝑌𝑛]| ≤ ‖𝑋𝑛‖𝐿1‖𝑌𝑛‖𝐿∞ .

Clearly the right hand side tends to ‖𝑋‖𝐿1‖𝑌‖𝐿∞ , so it is enough to check that
𝑋𝑛𝑌𝑛 → 𝑋𝑌 in 𝐿1. This is true because 𝑋𝑛𝑌𝑛

ℙ
→ 𝑋𝑌 and the sequence is

Cauchy in 𝐿1, since

𝔼[|𝑋𝑛𝑌𝑛 − 𝑋𝑚𝑌𝑚|] ≤ 𝔼[|𝑋𝑛 − 𝑋𝑚||𝑌𝑛| + |𝑌𝑛 − 𝑌𝑚||𝑋𝑚|]
≤ ‖𝑋𝑛 − 𝑋𝑚‖𝐿1‖𝑌𝑛‖𝐿∞ + ‖𝑌𝑛 − 𝑌𝑚‖𝐿∞‖𝑋𝑚‖𝐿1 ,

and sup𝑛≥1 ‖𝑌𝑛‖𝐿∞ and sup𝑚≥1 ‖𝑋𝑚‖𝐿1 are bounded.

Here are some further properties of the expectation.

Proposition 2.27.The following hold:

• Triangle inequality: For any𝑋,𝑌 ∈ 𝐿1 we have |𝔼[𝑋]| ≤ 𝔼[|𝑋|].

• Monotonicity: If𝑋,𝑌 ∈ 𝐿1 and𝑋 ≤ 𝑌, then 𝔼[𝑋] ≤ 𝔼[𝑌].

• 𝐿∞ embeds continuously in 𝐿1: If 𝑌 ∈ 𝐿∞, then 𝑌 ∈ 𝐿1 and ‖𝑌‖𝐿1 ≤
‖𝑌‖𝐿∞ . In particular convergence in 𝐿∞ implies convergence in 𝐿1.
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• Only size matters: If𝑋 ∈ 𝐿0 and 𝑌 ∈ 𝐿1 and |𝑋| ≤ |𝑌|, then𝑋 ∈ 𝐿1.

• Reality check: If𝑋 ∈ 𝐿1, then |𝑋| ∈ 𝐿1 and ‖𝑋‖𝐿1 = 𝔼[|𝑋|].

Proof. The first two items follow directly from Hölder’s inequality like we saw
in the case of simple functions above.

Similarly to see that 𝐿∞ embeds continuously in 𝐿1, take 𝑋 = 1 in Hölder’s
inequality.

For the second last point we can write 𝑋 = 𝑌𝑔(𝑌), where 𝑔(𝑌) = 𝑋/𝑌 if
𝑌 ≠ 0 and 0 otherwise. Then 𝑔(𝑌) ∈ 𝐿∞ and the claim again follows from
Proposition 2.26.

For the reality check we notice that applying the previous point to 𝑋 = |𝑍|
and 𝑌 = 𝑍 we see that the map 𝑍 ↦ |𝑍| from 𝐿1 to itself is well-defined. It
is also continuous since by monotonicity 𝔼[||𝑋| − |𝑌||] ≤ 𝔼[|𝑋 − 𝑌|] for all
𝑋,𝑌 ∈ 𝐿1. Hence also the composition 𝑋 ↦ 𝔼[|𝑋|] is a continuous map
𝐿1 → ℝ, and as the equality ‖𝑋‖𝐿1 = 𝔼[|𝑋|] holds for all 𝑋 ∈ 𝑆 we see that it
must by continuity hold for all𝑋 ∈ 𝐿1.

Let us close this section by giving another common metric for 𝐿0.

Proposition 2.28.The map (𝑋, 𝑌) ↦ 𝔼[|𝑋 − 𝑌| ∧ 1] ≕ 𝑑𝐿0 defines a complete
metric on 𝐿0 which is equivalent to the Ky Fan metric.

Proof. Exercise.

2.5 Uniform integrability and convergence theorems

We have seen that convergence in 𝐿1 implies convergence in probability. It is
therefore natural to ask the following question: if we know that a sequence
converges in probability, what extra condition is needed for it to converge in
𝐿1? The answer turns out to be uniform integrability, which guarantees that the
random variables do not concentrate their mass in smaller and smaller subsets
of the probability space.

Example 2.29. Consider the probability space ([0, 1],B, 𝜆), where 𝜆 is the uni-
form measure on [0, 1]. Define a sequence of random variables 𝑋𝑛 by setting
𝑋𝑛(𝑥) = 𝑛𝟙[0,1/𝑛](𝑥). Then 𝑋𝑛

ℙ
→ 0 but 𝔼[𝑋𝑛] = 1 for all 𝑛 so 𝑋𝑛 does not

converge in 𝐿1. ◆
The above example presents a typical case of a sequence that is not uniformly

integrable.

Definition 2.30. Let (𝑋𝑖)𝑖∈𝐼 be a family of random variables in 𝐿1. We say that
the family is uniformly integrable if sup𝑖∈𝐼 𝔼[|𝑋𝑖|] < ∞ and for all 𝜀 > 0 there
exists 𝛿 > 0 such that

𝔼[|𝑋𝑖|𝟙𝐴] < 𝜀
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for all 𝑖 ∈ 𝐼 and 𝐴 ∈ F such that ℙ[𝐴] ≤ 𝛿. ◆

Remark. In analysis one oftendrops the first condition sup𝑖∈𝐼 𝔼[|𝑋𝑖|] < ∞, but
it is standard to include it in probability theory. The most important practical
consequence of this condition is that uniformly integrable random variables
are tight, meaning that

lim
𝜆→∞

sup
𝑖∈𝐼
ℙ[|𝑋𝑖| > 𝜆] = 0.

An alternative definition of uniform integrability then is to say that

lim
𝜆→∞

sup
𝑖∈𝐼
𝔼[|𝑋𝑖|𝟙{|𝑋𝑖|>𝜆}] = 0,

and we leave the proof as an exercise. ◆

Lemma 2.31. For any𝑋 ∈ 𝐿1 the singleton family {𝑋} is uniformly integrable.

Proof. Let (𝐴𝑛)∞𝑛=1 be any sequence of events such that ℙ[𝐴𝑛] → 0. It is
enough to show that 𝔼[|𝑋|𝟙𝐴𝑛 ] → 0 as 𝑛 → ∞.

Let (𝑌𝑚)∞𝑚=1 be a sequence in 𝐿∞ such that 𝑌𝑚 → 𝑋 in 𝐿1. Then

lim sup
𝑛→∞
𝔼[|𝑋|𝟙𝐴𝑛 ] ≤ lim sup

𝑛→∞
(𝔼[|𝑋 − 𝑌𝑚|𝟙𝐴𝑛 ] + 𝔼[|𝑌𝑚|𝟙𝐴𝑛 ])

≤ 𝔼[|𝑋 − 𝑌𝑚|] + ‖𝑌𝑚‖𝐿∞ lim sup
𝑛→∞
ℙ[𝐴𝑛] = ‖𝑋 − 𝑌𝑚‖𝐿1

and the claim follows by letting𝑚 →∞.

Theorem 2.32. Let (𝑋𝑛)∞𝑛=1 be a sequence in 𝐿1. Then 𝑋𝑛 converge in 𝐿1 if and
only if𝑋𝑛 converge in probability and the sequence is uniformly integrable.

Proof. Assume first that 𝑋𝑛 → 𝑋 in 𝐿1. Then we already know that the se-
quence converges in probability, so it is enough to check that it is uniformly
integrable. For any 𝜀 > 0 there exists 𝛿0 > 0 such that for all events 𝐴 for
which ℙ[𝐴] < 𝛿0 we have 𝔼[|𝑋|𝟙𝐴] < 𝜀/2. Thus there exists 𝑛0 ∈ ℕ such that
for 𝑛 ≥ 𝑛0 we have

𝔼[|𝑋𝑛|𝟙𝐴] ≤ 𝔼[|𝑋𝑛 − 𝑋|𝟙𝐴] + 𝔼[|𝑋|𝟙𝐴] ≤ 𝜀.

On the other hand the family {𝑋1,… ,𝑋𝑛0−1} consists of just finitely many ran-
dom variables each of which is individually uniformly integrable, so there exist
𝛿1,… , 𝛿𝑛0−1 > 0 for which 𝔼[|𝑋𝑛|𝟙𝐴] < 𝜀 when ℙ[𝐴] < 𝛿𝑛, 1 ≤ 𝑛 ≤ 𝑛0 − 1.
Picking 𝛿 = min(𝛿0, 𝛿1,… , 𝛿𝑛0−1) proves the claim.

Assume then that 𝑋𝑛 converge in probability and that they are uniformly
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integrable. It is enough to show that𝑋𝑛 is Cauchy in 𝐿1. Let 𝜀 > 0. We have

𝔼[|𝑋𝑛 − 𝑋𝑚|] ≤ 𝔼[|𝑋𝑛 − 𝑋𝑚|𝟙{|𝑋𝑛−𝑋𝑚|≤𝜀}] + 𝔼[|𝑋𝑛 − 𝑋𝑚|𝟙{|𝑋𝑛−𝑋𝑚|>𝜀}]
≤ 𝜀 + 𝔼[|𝑋𝑛|𝟙{|𝑋𝑛−𝑋𝑚|>𝜀}] + 𝔼[|𝑋𝑚|𝟙{|𝑋𝑛−𝑋𝑚|>𝜀}].

Since the sequence is Cauchy in probability, we have

ℙ[|𝑋𝑛 − 𝑋𝑚| > 𝜀] → 0

as𝑚, 𝑛 → ∞. Thus by uniform integrability we get

𝔼[|𝑋𝑛 − 𝑋𝑚|] ≤ 3𝜀

for large enough 𝑛,𝑚.

A useful criterion for checking uniform integrability is the following.

Lemma 2.33. Assume that (𝑋𝑖)𝑖∈𝐼 is a family of random variables and that there
exists 𝑌 ∈ 𝐿1 such that for all 𝑖 ∈ 𝐼 we have |𝑋𝑖| ≤ 𝑌 almost surely. Then the
family (𝑋𝑖)𝑖∈𝐼 is uniformly integrable.

Proof. Obvious since for any event 𝐴 we have 𝔼[|𝑋𝑖|𝟙𝐴] ≤ 𝔼[𝑌𝟙𝐴].

Corollary 2.34 (Dominated convergence theorem). Assume that (𝑋𝑛)∞𝑛=1 is a
sequence which converges in probability to 𝑋 and that there exists 𝑌 ∈ 𝐿1 such
that we have |𝑋𝑛| ≤ 𝑌 a.s. for all 𝑛 ≥ 1. Then𝑋 ∈ 𝐿1 and

lim
𝑛→∞
𝔼[𝑋𝑛] = 𝔼[𝑋].

Proof. By Lemma 2.33 the sequence (𝑋𝑛)∞𝑛=1 is uniformly integrable and the
claim follows from Theorem 2.32.

In the rest of the sectionwewill look at expectations of non-negative random
variables. To this end we make the following definition.

Definition 2.35. Assume that𝑋 is an a.s. nonnegative random variable which
is not integrable, i.e. 𝑋 ∉ 𝐿1. We then define 𝔼[𝑋] ≔ ∞. Here we allow 𝑋 to
also take the value∞ with positive probability.

More generally any random variable𝑋 can be split into its positive and neg-
ative parts, 𝑋 = 𝑋+ − 𝑋− with 𝑋+ and 𝑋− non-negative, and if exactly one of
𝑋+ and𝑋− is not in 𝐿1, we may define 𝔼[𝑋] ≔ ±∞ accordingly. ◆

To see that the definition is natural, we note the following.

Theorem 2.36 (Monotone convergence theorem). Assume that (𝑋𝑛)∞𝑛=1 is a
pointwise increasing sequence of random variables taking values in [0,∞] and
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let𝑋 denote the pointwise limit. Then

lim
𝑛→∞
𝔼[𝑋𝑛] = 𝔼[𝑋].

Proof. If𝑋 ∈ 𝐿1, we are done by the dominated convergence theorem.
If 𝑋 ∉ 𝐿1, then it is enough to show that the increasing sequence 𝔼[𝑋𝑛] is

not bounded. To obtain a contradiction, assume that it is. Then for 𝑚 ≥ 𝑛 we
have

𝔼[|𝑋𝑚 − 𝑋𝑛|] = 𝔼[𝑋𝑚] − 𝔼[𝑋𝑛],

but since the sequence𝔼[𝑋𝑛] converges and is thereforeCauchy, we see that𝑋𝑛
is Cauchy in 𝐿1 and hence converges to𝑋 in 𝐿1, which is a contradiction.

We close this section with one more useful result.

Theorem 2.37 (Fatou’s lemma). Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables
taking values in [0,∞]. Then

𝔼[lim inf
𝑛→∞
𝑋𝑛] ≤ lim inf

𝑛→∞
𝔼[𝑋𝑛].

Proof. Let us write 𝑌𝑛 = inf𝑘≥𝑛 𝑋𝑘. Then 𝑌𝑛 ≤ 𝑋𝑛 for all 𝑛 ≥ 1, and moreover
the sequence (𝑌𝑛)∞𝑛=1 increases monotonically. Thus by the monotone conver-
gence theorem

𝔼[lim inf
𝑛→∞
𝑋𝑛] = 𝔼[ lim𝑛→∞𝑌𝑛] = lim

𝑛→∞
𝔼[𝑌𝑛] = lim inf

𝑛→∞
𝔼[𝑌𝑛] ≤ lim inf

𝑛→∞
𝔼[𝑋𝑛].

As an easy corollarywe have the following version for randomvariables con-
verging in probability.

Corollary 2.38. If (𝑋𝑛)∞𝑛=1 is a sequence of non-negative random variables con-
verging to some random variable𝑋 in probability, then

𝔼[𝑋] ≤ lim inf
𝑛→∞
𝔼[𝑋𝑛].

Proof. Let𝑋𝑛𝑘 be a subsequence such that

lim
𝑘→∞
𝔼[𝑋𝑛𝑘 ] = lim inf

𝑛→∞
𝔼[𝑋𝑛].

This subsequence contains a sub-sub-sequence𝑋𝑛𝑘𝑚 which converges to𝑋 a.s.,
and by choosing suitable representatives we may actually assume that𝑋𝑛𝑘𝑚 →
𝑋 surely without altering the value of any of the expectations. The claim then
follows from Fatou’s lemma.

42



2. Spaces of random variables

2.6 Integration on general measure spaces

Although our main interest is in probability spaces, it is still useful to have the
Lebesgue integral defined on other measure spaces as well, the most impor-
tant case being of course ℝ𝑑 with the Lebesgue measure. In this section we
will briefly and without proofs explain how one can accomplish this by using
probability measures and the integral we have already defined.

Definition 2.39. Let (𝑇,G, 𝜇) be a measure space. We say 𝜇 is 𝜎-finite if there
exists a countable (finite or infinite) partition (𝐴𝑛)𝑛 of 𝑇 into disjoint measur-
able subsets such that 0 < 𝜇(𝐴𝑛) < ∞ for all 𝑛. ◆

Let (𝑇,G, 𝜇) be a 𝜎-finite measure space with a partition (𝐴𝑛)𝑛 as above.
Define probability measures 𝜇𝑛 onG by setting 𝜇𝑛(𝐸) ≔

𝜇(𝐸∩𝐴𝑛)
𝜇(𝐴𝑛)

and for a non-
negative measurable function 𝑓∶ 𝑇 → [0,∞] set

∫
𝑇
𝑓𝑑𝜇 ≔ ∑

𝑛
𝜇(𝐴𝑛) ∫

𝐴𝑛
𝑓𝑑𝜇𝑛.

It is an easy exercise to show that the definition of ∫
𝑇
𝑓𝑑𝜇 does not depend

on the partition 𝐴𝑛. If 𝑓 is a signed measurable function we can write it as
a difference of its positive and negative parts 𝑓+ and 𝑓− and define ∫𝑓𝑑𝜇 =
∫𝑓+ 𝑑𝜇−∫𝑓− 𝑑𝜇, provided that at least one of the integrals on the right hand
side is finite. If both of them are finite, we say that 𝑓 is integrable, and this also
defines the class 𝐿1(𝜇).

Finally (just for completeness since wewon’t need it later on), let us note that
if (𝑇,G, 𝜇) is a general measure space, we may for all measurable non-negative
𝑓 define

∫
𝑇
𝑓𝑑𝜇 ≔ ∫

{𝑥∈𝑇∶𝑓(𝑥)>0}
𝑓𝑑𝜇,

provided that the restriction of 𝜇 to the set {𝑥 ∈ 𝑇 ∶ 𝑓(𝑥) > 0} is 𝜎-finite.
Otherwise we set ∫

𝑇
𝑓𝑑𝜇 = ∞, which makes sense, since if 𝜇 restricted to

{𝑥 ∈ 𝑇 ∶ 𝑓(𝑥) > 0} is not 𝜎-finite, at least one of the sets {𝑥 ∈ 𝑇 ∶ 𝑓(𝑥) ∈
[2−𝑛, 2−𝑛+1)} where 𝑛 ∈ ℤmust have infinite mass.

We leave it for the reader to check that all the basic results for integrals in
Proposition 2.26 and Proposition 2.27 continue to hold, with the exception
that 𝐿∞(𝜇) is not anymore necessarily a subset of 𝐿1(𝜇). Also the monotone
and dominated convergence theorems as well as Fatou’s lemma still hold.

2.7 Absolute continuity of measures

Let us next discuss another way to characterise 𝜎-finiteness as those measures
that are in a sense equivalent to a probability measure. Our starting point will
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be the following observation.

Lemma2.40. Assume that (𝑇,G, 𝜇) is a measure space and that𝑓∶ 𝑇 → [0,∞]
is a non-negative measurable function. Then the map 𝜈∶ G → [0,∞] defined
by

𝜈(𝐴) = ∫
𝐴
𝑓𝑑𝜇 (2.2)

is a measure. Moreover for any measurable 𝑔 we have 𝑔 ∈ 𝐿1(𝜈) if and only if
𝑔𝑓 ∈ 𝐿1(𝜇), in which case

∫𝑔𝑑𝜈 = ∫𝑔𝑓𝑑𝜇.

Proof. Let (𝐴𝑛)∞𝑛=1 be a sequence of disjoint measurable subsets. By themono-
tone convergence theorem we have

𝜈(
∞

⨄
𝑛=1
𝐴𝑛) = ∫𝟙⋃𝐴𝑛𝑓𝑑𝜇 = ∫

∞

∑
𝑛=1
𝟙𝐴𝑛𝑓𝑑𝜇 =

∞

∑
𝑛=1
∫
𝐴𝑛
𝑓𝑑𝜇,

so countable additivity holds and 𝜈 is a measure. Moreover, if 𝑔 = 𝟙𝐸 is an
indicator function then clearly ∫𝑔𝑑𝜈 = 𝜈(𝐸) = ∫𝟙𝐸𝑓𝑑𝜇 holds. By linearity
the identity also holds in the case where 𝑔 is a simple function and hence by
approximation for all 𝑔 ∈ 𝐿1(𝜈).

The relationship between the two measures in (2.2) motivates a couple of
definitions.

Definition 2.41. Let (𝑇,G) be a measurable space and 𝜇 and 𝜈 two measures
on G.

• We say that 𝜈 has the Radon–Nikodym property relative to 𝜇 if there
exists a measurable function 𝑓∶ 𝑇 → [0,∞] such that

𝜈(𝐴) = ∫
𝐴
𝑓𝑑𝜇

for all 𝐴 ∈ G. The function 𝑓 is called a density function or a Radon–
Nikodym derivative of 𝜈 relative to 𝜇 and we often write 𝑓 = 𝑑𝜈𝑑𝜇 .

• We say that 𝜈 is absolutely continuousw.r.t. 𝜇 andwrite 𝜈 ≪ 𝜇 if 𝜇(𝐴) =
0 implies 𝜈(𝐴) = 0 for all 𝐴 ∈ G.

• We say that the measures 𝜇 and 𝜈 are equivalent and write 𝜇 ∼ 𝜈 if they
have the same null sets, i.e. 𝜈 ≪ 𝜇 and 𝜇 ≪ 𝜈. ◆

Below are a couple of preliminary observations regarding absolute continu-
ity and the Radon–Nikodym property. The first one is a kind of a chain rule.
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Lemma 2.42. If 𝜇, 𝜈 and 𝜂 are measures on the same 𝜎-algebra and 𝜂 has the
Radon–Nikodym property relative to 𝜈 with a density 𝑑𝜂𝑑𝜈 , and 𝜈 in turn has the
Radon–Nikodym property relative to 𝜇with a density 𝑑𝜈𝑑𝜇 , then 𝜂 has the Radon–

Nikodym property relative to 𝜇 with a density 𝑑𝜂𝑑𝜈
𝑑𝜈
𝑑𝜇 .

Proof. Simple unraveling of definitions.

The second one is that having the Radon–Nikodym property implies abso-
lute continuity.

Lemma 2.43. If 𝜈 has the Radon–Nikodym property relative to 𝜇, then 𝜈 ≪ 𝜇.

Proof. Trivial since anything integrated over a set of measure 0 equals 0.

A central nontrivial result inmeasure theory is that if 𝜇 is a probability mea-
sure then the converse holds.

Theorem 2.44 (Radon–Nikodym theorem). Let 𝜇 be a probability measure,
and let 𝜈 be absolutely continuous w.r.t. 𝜇. Then 𝜈 has the Radon–Nikodym
property relative to 𝜇.

Proof. See Appendix C.

Finally, let us state a useful characterisation of 𝜎-finite measure spaces.

Proposition 2.45. A nonzero measure 𝜇 on ameasurable space (𝑇,G) is 𝜎-finite
if and only if there exists a probability measure 𝜈 on G such that 𝜇 ∼ 𝜈 and
𝑑𝜇
𝑑𝜈 < ∞ almost surely.

Proof. Assume first that such probability measure 𝜈 exists. Pick a representa-
tive of 𝑑𝜇𝑑𝜈 that is finite everywhere and consider the disjoint sets 𝐴𝑘 = {

𝑑𝜇
𝑑𝜈 ∈

[𝑘, 𝑘+1)}. Then we have that⋃∞𝑘=1 𝐴𝑘 = 𝑇 and moreover 𝜇(𝐴𝑘) = ∫𝐴𝑘
𝑑𝜇
𝑑𝜈 𝑑𝜈 ≤

𝑘 + 1, so 𝜇 is 𝜎-finite.
Assume then that 𝜇 is 𝜎-finite and let (𝐴𝑛)∞𝑛=1 be a partition of 𝑇 such that
𝜇(𝐴𝑛) < ∞ for all 𝑛 ≥ 1. We can then define a probability measure 𝜈 by setting

𝜈(𝐸) = 𝐶∫
𝐸

∞

∑
𝑛=1

𝟙𝐴𝑛
2𝑛(1 + 𝜇(𝐴𝑛))

𝑑𝜇,

where 𝐶 = (∑∞𝑛=1
𝜇(𝐴𝑛)
2𝑛(1+𝜇𝐴𝑛 )
)−1 is a normalising constant (well-defined since 𝜇 is

not identically 0). Then clearly 𝜈(𝐸) = 0 if and only if 𝜇(𝐸) = 0 and thus 𝜈 and
𝜇 are equivalent measures. Moreover, we have

𝑑𝜇
𝑑𝜈
= 𝐶−1 1

∑∞𝑛=1
𝟙𝐴𝑛

2𝑛(1+𝜇(𝐴𝑛))

< ∞

45



2. Spaces of random variables

almost surely.

2.8 Lebesgue measure on ℝ

We have already seen how to construct the uniform measure 𝜆0 on [0, 1] using
infinitely many Bernoulli random variables and in a similar manner we can
define 𝜆𝑛 for 𝑛 ∈ ℤ to be the uniform measure on the interval [𝑛, 𝑛 + 1].

Let us now consider the map 𝜆∶ B→ [0,∞] given by

𝜆(𝐴) ≔ ∑
𝑛∈ℤ
𝜆𝑛(𝐴 ∩ [𝑛, 𝑛 + 1]).

It is easy to check that 𝜆 is countably additive and hence a measure.

Proposition 2.46.We have 𝜆([𝑎, 𝑏]) = 𝑏 − 𝑎 for all −∞ < 𝑎 < 𝑏 < ∞.

Proof. Exercise.

This is also enough to characterise the measure.

Exercise 2.47. Let 𝜇 and 𝜈 be 𝜎-finite measures on a measurable space (𝑇,G)
that agree on a𝜋-system𝑃 generating the 𝜎-algebra. Assume further that there
exists a sequence (𝐴𝑛)∞𝑛=1 of sets in 𝑃 such that ⋃∞𝑛=1 𝐴𝑛 = 𝑇 and 𝜇(𝐴𝑛) < ∞
and show that then 𝜇 = 𝜈. ◆

It is customary towrite∫𝑓(𝑥) 𝑑𝜆(𝑥) = ∫𝑓(𝑥) 𝑑𝑥when the integratingmea-
sure is the Lebesgue measure. The following theorem is of huge practical im-
portance.

Theorem 2.48 (Fundamental theorem of calculus). Assume that 𝑓 is continu-
ously differentiable on an interval [𝑎, 𝑏] ⊂ ℝ. Then

∫
𝑏

𝑎
𝑓′(𝑥) 𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎).

Proof. Exercise.

Remark. Let us mention that in general it is not hard to show that if a function
is Riemann integrable, it is also Lebesgue integrable and the integrals agree.

Secondly, let us also mention that the assumption that the derivative is con-
tinuous is in fact not needed. It is enough to assume that the derivative is inte-
grable, see e.g. [6, Theorem 7.21]. We leave the further studies of these topics
to a real analysis and/or measure theory course. ◆

Having defined the Lebesgue measure we may now formally say what it
means for a distribution to have a probability density function.
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Definition 2.49. Let 𝑝𝑋 ∶ ℝ → [0,∞) be a measurable function with

∫
∞

−∞
𝑝𝑋(𝑥) 𝑑𝑥 = 1.

We say that a random variable 𝑋 has a probability density function (p.d.f.)
𝑝𝑋 if its law satisfies

𝑋∗ℙ(𝐴) = ∫
𝐴
𝑝𝑋(𝑥) 𝑑𝑥

for all 𝐴 ∈ B. ◆
Let us close this section with the following change-of-variables formula,

which is useful when computing expectations in practice.

Proposition 2.50. Let𝑋 be a random variable. Then for any non-negative mea-
surable 𝐹∶ ℝ → ℝ we have

𝔼[𝐹(𝑋)] = ∫𝐹(𝑥) 𝑑(𝑋∗ℙ)(𝑥).

Moreover, for general measurable 𝐹 the composition 𝐹 ∘ 𝑋 is integrable w.r.t. ℙ
if and only if 𝐹 is integrable w.r.t. 𝑋∗ℙ, and in this case the above equality holds.
In particular, if𝑋 has a probability density function 𝑝𝑋, then

𝔼[𝐹(𝑋)] = ∫𝐹(𝑥)𝑝𝑋(𝑥) 𝑑𝑥.

Proof. It is clear that if we can show the result for non-negative 𝐹, then the
general signed case follows by splitting into positive and negative parts. More-
over, the second formula in the case where𝑋 has a probability density follows
from Lemma 2.40 after we have shown the first formula.

Notice first that if 𝐹 = 𝟙𝐴 is an indicator function of some Borel set 𝐴 ⊂ ℝ,
then the formula holds since by definition

𝔼[𝐹(𝑋)] = ℙ[𝑋 ∈ 𝐴] = 𝑋∗ℙ(𝐴) = ∫
ℝ
𝐹𝑑(𝑋∗ℙ).

By linearity the formula thus holds whenever 𝐹 is simple (takes only finitely
many values).

If 𝐹 is a general non-negative measurable function, then we may consider
the sequence 𝐹𝑛 = (⌊2𝑛𝐹⌋/2𝑛) ∧ 𝑛, which consists of simple functions and
converges monotonously to 𝐹. By the monotone convergence theorem then

𝔼[𝐹(𝑋)] = lim
𝑛→∞
𝔼[𝐹𝑛(𝑋)] = lim

𝑛→∞
∫
ℝ
𝐹𝑛 𝑑(𝑋∗ℙ) = ∫

ℝ
𝐹𝑑(𝑋∗ℙ).

Remark. The above change-of-variables formula holds also for 𝑇-valued ran-
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dom variables where (𝑇,G) is some measurable space, and in particular for
random vectors having a probability density inℝ𝑑 also the analogue of the sec-
ond formula in Proposition 2.50 holds. The proof is essentially the same. ◆

2.9 𝐿𝑝-spaces for general 𝑝

Let us return again to the setting of probability spaces. So far we have defined
three 𝐿𝑝 spaces, namely when 𝑝 ∈ {0, 1,∞}. In this section we will complete
the picture to any 𝑝 ∈ [0,∞].

Definition 2.51. The space 𝐿𝑝 for 𝑝 ∈ (0,∞) is defined by

𝐿𝑝 ≔ {𝑋 ∈ 𝐿0 ∶ ‖𝑋‖𝐿𝑝 < ∞},

where
‖𝑋‖𝐿𝑝 ≔ (𝔼[|𝑋|𝑝])

1/𝑝. ◆

We will soon see that ‖ ⋅ ‖𝐿𝑝 is a norm for 𝑝 ≥ 1. This is not however true
for 𝑝 < 1 and in this case one has to think of ‖ ⋅ ‖𝐿𝑝 as just being no more than
notation.

Let us start by looking at a bunch of (very) useful inequalities.

Theorem 2.52 (Jensen’s inequality). Let 𝜑∶ ℝ → ℝ be convex, meaning that

𝜑(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝜑(𝑥) + (1 − 𝑡)𝜑(𝑦)

for all 𝑥, 𝑦 ∈ ℝ, 𝑡 ∈ [0, 1]. Then for any random variable 𝑋 such that 𝔼[𝑋] is
defined (i.e. at least one of 𝔼[𝑋+] and 𝔼[𝑋−] is finite) also 𝔼[𝜑(𝑋)] is defined
and we have

𝔼[𝜑(𝑋)] ≥ 𝜑(𝔼[𝑋]).

Proof. Exercise.

As a corollary we see that 𝐿𝑞 ⊂ 𝐿𝑝 when 𝑞 ≥ 𝑝.

Corollary 2.53.We have ‖𝑋‖𝐿𝑝 ≤ ‖𝑋‖𝐿𝑞 for 0 < 𝑝 ≤ 𝑞 ≤ ∞.

Proof. The case 𝑞 = ∞ is easy, so assume that 𝑞 < ∞. Applying Jensen’s
inequality with the function 𝑥 ↦ 𝑥𝑞/𝑝 we have

‖𝑋‖𝐿𝑝 = (𝔼[|𝑋|𝑝])1/𝑝 = ((𝔼[|𝑋|𝑝])𝑞/𝑝)
1/𝑞
≤ (𝔼[|𝑋|𝑞])1/𝑞 = ‖𝑋‖𝐿𝑞 .

The next inequality is convenient (among other things) when one wants to
derive estimates for expectations of products of random variables.
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Theorem 2.54 (Hölder’s inequality). Let 𝑝, 𝑞 ∈ [1,∞] be such that

1
𝑝
+ 1
𝑞
= 1

and assume that𝑋 ∈ 𝐿𝑝 and 𝑌 ∈ 𝐿𝑞. Then𝑋𝑌 ∈ 𝐿1 and

‖𝑋𝑌‖𝐿1 ≤ ‖𝑋‖𝐿𝑝‖𝑌‖𝐿𝑞 .

Proof. We note first that for any 𝑎, 𝑏 ≥ 0 we have Young’s inequality

𝑎𝑏 ≤ 𝑎
𝑝

𝑝
+ 𝑏
𝑞

𝑞
.

The case when 𝑎 or 𝑏 is 0 is clear, and otherwise we may write 𝑎𝑝 = 𝑒𝑠 and
𝑏𝑞 = 𝑒𝑡 for some 𝑠, 𝑡 ∈ ℝ. Then by the convexity of the exponential function
we have

𝑎𝑏 = 𝑒
1
𝑝 𝑠+
1
𝑞 𝑡 ≤ 𝑒

𝑠

𝑝
+ 𝑒
𝑡

𝑞
= 𝑎
𝑝

𝑝
+ 𝑏
𝑞

𝑞
.

Let us now prove the claim itself. Again the case when either ‖𝑋‖𝐿𝑝 or ‖𝑌‖𝐿𝑝
equals 0 is trivial since then 𝑋 or 𝑌 is 0 almost surely and also 𝔼[|𝑋𝑌|] = 0.
We may thus assume by scaling that ‖𝑋‖𝐿𝑝 = ‖𝑌‖𝐿𝑞 = 1. Then letting 𝑎 = |𝑋|
and 𝑏 = |𝑌| and integrating gives us the inequality:

𝔼[|𝑋𝑌|] ≤ 𝔼[|𝑋|
𝑝

𝑝
+ |𝑌|
𝑞

𝑞
] = 1
𝑝
+ 1
𝑞
= 1 = ‖𝑋‖𝐿𝑝‖𝑌‖𝐿𝑞 .

Theorem 2.55 (Minkowski inequality). Let𝑋,𝑌 ∈ 𝐿𝑝 for 𝑝 ∈ (0,∞]. Then

‖𝑋 + 𝑌‖𝑝∧1𝐿𝑝 ≤ ‖𝑋‖
𝑝∧1
𝐿𝑝 + ‖𝑌‖

𝑝∧1
𝐿𝑝 .

Proof. For 𝑝 ∈ (0, 1) we have

‖𝑋 + 𝑌‖𝑝𝐿𝑝 = 𝔼[|𝑋 + 𝑌|
𝑝] ≤ 𝔼[|𝑋|𝑝] + 𝔼[|𝑌|𝑝]

by the inequality (𝑎 + 𝑏)𝑝 ≤ 𝑎𝑝 + 𝑏𝑝 for 𝑎, 𝑏 ≥ 0.
For 𝑝 = 1 and 𝑝 = ∞ we already know the result from earlier sections.
For𝑝 ∈ (1,∞) let 𝑞be such that 1𝑝+

1
𝑞 = 1. Wemay assume that𝔼[|𝑋+𝑌|𝑝] ≠

0, since otherwise the inequality is trivial. Then by the triangle inequality and
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Hölder’s inequality we have

𝔼[|𝑋 + 𝑌|𝑝] ≤ 𝔼[|𝑋||𝑋 + 𝑌|𝑝−1] + 𝔼[|𝑌||𝑋 + 𝑌|𝑝−1]
≤ ‖𝑋‖𝐿𝑝‖|𝑋 + 𝑌|𝑝−1‖𝐿𝑞 + ‖𝑌‖𝐿𝑝‖|𝑋 + 𝑌|𝑝−1‖𝐿𝑞
= (‖𝑋‖𝐿𝑝 + ‖𝑌‖𝐿𝑝 )(𝔼[|𝑋 + 𝑌|𝑝])1/𝑞,

and the claim follows by dividing by (𝔼[|𝑋 + 𝑌|𝑝])1/𝑞.

Let us next define

𝑑𝐿𝑝 (𝑋, 𝑌) ≔
{{
{{
{

𝔼[|𝑋 − 𝑌| ∧ 1], if 𝑝 = 0
‖𝑋 − 𝑌‖𝑝𝐿𝑝 , if 𝑝 ∈ (0, 1)
‖𝑋 − 𝑌‖𝐿𝑝 , if 𝑝 ≥ 1.

Theorem 2.56.The space (𝐿𝑝, 𝑑𝐿𝑝 ) is a complete metric space for all 𝑝 > 0 and
in particular a Banach space for 𝑝 ≥ 1.

Proof. Recall that we already know the result for 𝑝 ∈ {0, 1,∞}. In other cases
it follows from the Minkowski inequality that 𝑑𝐿𝑝 is a metric. Moreover, for
𝑝 ≥ 1 the metric is given by an actual norm, so 𝐿𝑝 is a normed space in this
case.

To show that the spaces are complete, we note that if𝑋𝑛 is Cauchy in 𝐿𝑝 for
𝑝 > 0, then it is in particular Cauchy in 𝐿0 since

𝔼[|𝑋𝑛 − 𝑋𝑚| ∧ 1] ≤ 𝔼[|𝑋𝑛 − 𝑋𝑚|𝑝]

if 𝑝 ∈ (0, 1) and

𝔼[|𝑋𝑛 − 𝑋𝑚| ∧ 1] ≤ ‖𝑋𝑛 − 𝑋𝑚‖𝐿1 ≤ ‖𝑋𝑛 − 𝑋𝑚‖𝐿𝑝

if 𝑝 ≥ 1. Thus 𝑋𝑛 converges in 𝐿0 to some random variable 𝑋. By Corol-
lary 2.38 we then have

‖𝑋‖𝑝∧1𝐿𝑝 ≤ lim inf
𝑘→∞
‖𝑋𝑘‖𝑝∧1 ≤ lim inf

𝑘→∞
(‖𝑋𝑘 − 𝑋𝑛0‖

𝑝∧1
𝐿𝑝 + ‖𝑋𝑛0‖

𝑝∧1
𝐿𝑝 ) < ∞

where 𝑋𝑛0 ∈ 𝐿
𝑝 is chosen in such a way that ‖𝑋𝑘 − 𝑋𝑛0‖ ≤ 1 for all 𝑘 ≥ 𝑛0.

Thus𝑋 ∈ 𝐿𝑝 and similarly

𝔼[|𝑋 − 𝑋𝑛|𝑝] ≤ lim inf
𝑘→∞
𝔼[|𝑋𝑘 − 𝑋𝑛|𝑝] ≤ sup

𝑘≥𝑛
𝔼[|𝑋𝑘 − 𝑋𝑛|𝑝] → 0

as 𝑛 → ∞ so𝑋𝑛 → 𝑋 in 𝐿𝑝.

Let us close this chapter by giving the following summary of the spaces we
have studied:
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Figure 2.1.: Relationships between 𝐿𝑝-spaces.

• The spaces (𝐿𝑝)𝑝∈[0,∞] form a decreasing set of complete metric spaces.

• The embedding 𝐿𝑝 ⊂ 𝐿𝑞 for∞ ≥ 𝑝 ≥ 𝑞 ≥ 0 is continuous. In particular
if 𝑋𝑛 is a sequence of random variables that converges in 𝐿𝑝, it will also
converge in 𝐿𝑞.

• The spaces with𝑝 ≥ 1 are Banach spaces (themetric is given by a norm).

• The smaller spaces are dense inside the larger ones.

• Convergence a.s. does not define a space of its own but is related to the
space 𝐿0 in the following way: If a sequence converges a.s., it will con-
verge in 𝐿0. Conversely if a sequence converges in 𝐿0 it will contain a
subsequence which converges a.s.

• Convergence in 𝐿0 is also known as convergence in probability.
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Independence and conditioning

3.1 Product measures and Fubini theorem

In elementary geometry one learns that the area of a rectangle equals the prod-
uct of its width and height. Phrased differently: the two-dimensional measure
of the rectangle equals the product of the one dimensionalmeasures of its sides.
Taking products of general measures to obtain measures on the product space
is a generalization of this simple idea.

Let us first define the product of two 𝜎-algebras.

Definition 3.1. Let (𝑇1,G1) and (𝑇2,G2) be two measurable spaces. The prod-
uct 𝜎-algebra G1 ⊗G2 on 𝑇1 ×𝑇2 is the 𝜎-algebra generated by sets of the form
𝐴1 × 𝐴2 where 𝐴𝑖 ∈ G𝑖 for 𝑖 = 1, 2. ◆

Product measures are similarly defined by requiring that the measure of a
product set is the product of measures.

Definition 3.2. Let (𝑇1,G1, 𝜇1) and (𝑇2,G2, 𝜇2) be twomeasure spaces. Amea-
sure 𝜇 on the product 𝜎-algebra 𝐺1 × 𝐺2 is a product of the measures 𝜇1 and
𝜇2 if

𝜇(𝐴1 × 𝐴2) = 𝜇(𝐴1)𝜇(𝐴2)

for all𝐴𝑖 ∈ G𝑖, 𝑖 = 1, 2. In this case (𝑇1×𝑇2,G1⊗G2, 𝜇) is called a product space
of the measure spaces (𝑇1,G1, 𝜇1) and (𝑇2,G2, 𝜇2). Such a product measure is
usually denoted by 𝜇1 ⊗ 𝜇2. ◆

The product of two measures is not always unique, but in the case of 𝜎-finite
measures this is the case.

Theorem3.3. Assume that the measures 𝜇1 and 𝜇2 in Definition 3.2 are 𝜎-finite.
Then there exists a unique product measure on G1 × G2.

Proof when 𝜇1 and 𝜇2 are probability measures. Note that the set

𝑃 ≔ {𝐴1 × 𝐴2 ∶ 𝐴1 ∈ G1, 𝐴2 ∈ G2}

is a semialgebra, meaning that 𝑃 is closed under intersections, contains the
empty set, and if 𝐴 ∈ 𝑃, then the complement of 𝐴 can be written as a finite
disjoint union of sets in 𝑃.

From any semialgebra 𝑃 one can construct an algebra A by taking finite
unions of sets in 𝑃, and one can check that if 𝜇∶ 𝑃 → [0,∞] is a countably ad-
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ditive map, then it admits a countably additive extension to A, and hence one
can apply Carathéodory’s extension theorem (Theorem 1.35). We leave the de-
tails to the reader, since this was also more or less the content of Exercise 1.42.

Anyway, by the above discussion and Theorem 1.35 it is thus enough to
check that the map 𝜇∶ 𝑃 → [0,∞] defined by 𝜇(𝐴1 × 𝐴2) ≔ 𝜇1(𝐴1)𝜇2(𝐴2) is
countably additive. Assume thus that𝐴 = 𝐵×𝐶 ∈ 𝑃 is written as𝐴 = ⨄∞𝑛=1 𝐴𝑛
with 𝐴𝑛 = 𝐵𝑛 × 𝐶𝑛 ∈ 𝑃. Then we have

𝟙𝐵(𝑥)𝟙𝐶(𝑦) =
∞

∑
𝑛=1
𝟙𝐵𝑛 (𝑥)𝟙𝐶𝑛 (𝑦)

for all 𝑥 ∈ 𝑇1 and 𝑦 ∈ 𝑇2. Integrating first over 𝑥 and then over 𝑦 and using
the monotone convergence theorem gives

𝜇(𝐴) = 𝜇1(𝐵)𝜇2(𝐶) =
∞

∑
𝑛=1
𝜇1(𝐵𝑛)𝜇2(𝐵𝑛) =

∞

∑
𝑛=1
𝜇(𝐴𝑛),

which proves the theorem in the case of probability measures.

The most important result regarding integration with respect to the product
measure is that it can be computed as an iterated integral.

Theorem 3.4 (Fubini’s theorem). Let (𝑇1,G1, 𝜇1) and (𝑇2,G2, 𝜇2) be 𝜎-finite
measure spaces. Then for any integrable𝑓∶ 𝑇1×𝑇2 → ℝ themap 𝑥 ↦ 𝑓(𝑥, 𝑦) is
integrable for a.e. 𝑦 ∈ 𝑇2 and the map 𝑦 ↦ 𝑓(𝑥, 𝑦) is integrable for a.e. 𝑥 ∈ 𝑇1,
the a.e. defined map 𝑥 ↦ ∫

𝑇2
𝑓(𝑥, 𝑦) 𝑑𝜇2(𝑦) is integrable w.r.t. 𝜇1 and the a.e.

defined map 𝑦 ↦ ∫
𝑇1
𝑓(𝑥, 𝑦) 𝑑𝜇1(𝑥) is integrable w.r.t. 𝜇2, and we have

∫
𝑇1×𝑇2
𝑓𝑑(𝜇1 ⊗ 𝜇2) = ∫

𝑇1
∫
𝑇2
𝑓(𝑥, 𝑦) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥)

= ∫
𝑇2
∫
𝑇1
𝑓(𝑥, 𝑦) 𝑑𝜇1(𝑥) 𝑑𝜇2(𝑦).

Moreover, the above identity also holds for any 𝑓 ≥ 0 (even if 𝑓 is not integrable
in which case all integrals are∞).

Before going to the proof, let us see how knowing the result for probability
measures gives us the 𝜎-finite case as well.

Proof of Theorems 3.3 and 3.4 if they hold for probability measures. Let 𝜇1 and
𝜇2 be two 𝜎-finite measures. Then by Proposition 2.45 there exist probability
measures 𝜈1 and 𝜈2 and positive functions 𝑓1 and 𝑓2 so that 𝑑𝜇1 = 𝑓1𝑑𝜈1 and
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𝑑𝜇2 = 𝑓2𝑑𝜈2. We may then define

(𝜇1 ⊗ 𝜇2)(𝐴) = ∫𝟙𝐴(𝑥, 𝑦)𝑓1(𝑥)𝑓2(𝑦)𝑑(𝜈1 ⊗ 𝜈2)(𝑥, 𝑦)

which satisfies

(𝜇1 ⊗ 𝜇2)(𝐵 × 𝐶) = ∫𝟙𝐵(𝑥)𝟙𝐶(𝑦)𝑓1(𝑥)𝑓2(𝑦)𝑑𝜈1(𝑥)𝑑𝜈2(𝑦) = 𝜇1(𝐵)𝜇2(𝐶),

so it gives a product measure which is unique by Exercise 2.47. Fubini’s theo-
rem is also immediate since for any 𝑔 ∈ 𝐿1(𝜇1 ⊗ 𝜇2) we have

∫𝑔𝑑(𝜇1 ⊗ 𝜇2) = ∫𝑔(𝑥, 𝑦)𝑓1(𝑥)𝑓2(𝑦)𝑑(𝜈1 ⊗ 𝜈2)

= ∫∫𝑔(𝑥, 𝑦)𝑓1(𝑥) 𝑑𝜈1(𝑥)𝑓2(𝑦) 𝑑𝜈2(𝑦)

= ∫∫𝑔(𝑥, 𝑦) 𝑑𝜇1(𝑥) 𝑑𝜇2(𝑦).

We will now begin preparing for the proof of Theorem 3.4 for probability
measures and start with the following useful fact about measurable functions
on product spaces.

Proposition 3.5. Let (𝑇1,G1) and (𝑇2,G2) be measurable spaces and let (𝑇,G)
be the product space. Assume that 𝑓∶ 𝑇1 × 𝑇2 → ℝ is G-measurable. Then for a
fixed 𝑥 ∈ 𝑇1 the map 𝑦 ↦ 𝑓(𝑥, 𝑦) is G2-measurable.

Proof. Exercise. Hint: Use the fact that every measurable 𝑓 is a limit of simple
functions and deduce that it is enough to prove the theorem in the case where
𝑓 = 𝟙𝐴 for some set 𝐴 ∈ G1 ⊗ G2. Use the 𝜋-𝜆 theorem.

The second ingredient we need is a Fubini’s theorem for indicator functions.

Lemma3.6. Assume that (𝑇1,G1, 𝜇1) and (𝑇2,G2, 𝜇2) are probability spaces and
that𝐴 ∈ G1 ⊗G2. Then the map 𝑥 ↦ ∫

𝑇2
𝟙𝐴(𝑥, 𝑦) 𝑑𝜇2(𝑦) is G1-measurable and

(𝜇1 ⊗ 𝜇2)(𝐴) = ∫
𝑇1
∫
𝑇2
𝟙𝐴(𝑥, 𝑦) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥).

Proof. Weuse the𝜋-𝜆 theorem. LetA ⊂ G1⊗G2 be the family of allmeasurable
sets for which the claim holds. Clearly all sets of the form𝐴1×𝐴2 with𝐴1 ∈ G1
and𝐴2 ∈ G2 belong toA so it is enough to check thatA is a𝜆-system. If𝐴 ∈ A,
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then

(𝜇1 ⊗ 𝜇2)(𝐴𝑐) = 1 − (𝜇1 ⊗ 𝜇2)(𝐴) = ∫
𝑇1
∫
𝑇2
(1 − 𝟙𝐴(𝑥, 𝑦)) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥)

= ∫
𝑇1
∫
𝑇2
𝟙𝐴𝑐 (𝑥, 𝑦) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥),

where also the measurability of the map 𝑥 ↦ ∫
𝑇2
𝟙𝐴𝑐 (𝑥, 𝑦) 𝑑𝜇2(𝑦) is clear so

𝐴𝑐 ∈ A. Finally if (𝐴𝑛)∞𝑛=1 are disjoint elements of A, then by the monotone
convergence theorem

(𝜇1 ⊗ 𝜇2)(
∞

⋃
𝑛=1
𝐴𝑛) =

∞

∑
𝑛=1
∫
𝑇1
∫
𝑇2
𝟙𝐴𝑛 (𝑥, 𝑦) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥)

= ∫
𝑇1
∫
𝑇2
𝟙⋃𝑛 𝐴𝑛 (𝑥, 𝑦) 𝑑𝜇2(𝑦) 𝑑𝜇1(𝑥),

where 𝑥 ↦ ∫
𝑇2
𝟙⋃𝑛 𝐴𝑛 (𝑥, 𝑦) 𝑑𝜇2(𝑦) is measurable because it is a sum of mea-

surable functions, so also⋃∞𝑛=1 𝐴𝑛 ∈ A.

Proof of Theorem 3.4. It remains to prove the theorem for probability mea-
sures. Let us first assume that𝑋 isG1⊗G2 measurable and non-negative. Then
the sequence 𝑋𝑛 = (⌊2𝑛𝑋⌋/2𝑛) ∧ 𝑛 of simple functions converges to 𝑋 point-
wise monotonously, and it follows from the monotone convergence theorem
that

∫∫𝑋𝑑𝜇2 𝑑𝜇1 = lim
𝑛→∞
∫∫𝑋𝑛 𝑑𝜇2 𝑑𝜇1 = lim

𝑛→∞
∫𝑋𝑛 𝑑(𝜇1⊗𝜇2) = ∫𝑋𝑑(𝜇1⊗𝜇2).

If 𝑋 is in 𝐿1(𝜇1 ⊗ 𝜇2), then the result follows by considering separately the
positive and negative parts of𝑋.

Let us close this section by discussing a little bit products of more than two
spaces. In general we have the following definition.

Definition 3.7. Let (𝑇𝑖,G𝑖)𝑖∈𝐼 be a family ofmeasurable spaces. Then the prod-
uct 𝜎-algebra⨂𝑖∈𝐼 F𝑖 is the 𝜎-algebra on∏𝑖∈𝐼 𝑇𝑖 generated by the projection
maps 𝜋𝛼 ∶ (𝑡𝑖)𝑖∈𝐼 ↦ 𝑡𝛼 (𝛼 ∈ 𝐼), i.e.

⨂
𝑖∈𝐼

F𝑖 ≔ 𝜎({𝜋−1𝛼 (𝐴) ∶ 𝛼 ∈ 𝐼, 𝐴 ∈ G𝛼}). ◆

In the case where we have finitely many 𝜎-finite measure spaces (𝑇𝑘,G𝑘, 𝜇𝑘),
1 ≤ 𝑘 ≤ 𝑛, one can prove that again⨂𝑛𝑘=1 G𝑘 is generated by measurable rect-
angles𝐴1×⋯×𝐴𝑛, and that there exists a product measure 𝜇1⊗⋯⊗𝜇𝑛 on this
𝜎-algebra. Moreover, one can show that if one takes the products iteratively,
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then the product is associative and the order does not matter, meaning that
(𝜇1 ⊗ 𝜇2) ⊗ 𝜇3 = 𝜇1 ⊗ (𝜇2 ⊗ 𝜇3) = 𝜇1 ⊗ 𝜇2 ⊗ 𝜇3.

The most important example of a product of multiple measures is of course
the 𝑑-dimensional Lebesgue measure on ℝ𝑑.

Definition 3.8. Let 𝜆 be the Lebesgue measure on (ℝ,B), whereB is the Borel
𝜎-algebra on ℝ. We then define the 𝑑-dimensional Lebesgue measure 𝜆𝑑 ≔
𝜆⊗𝑑 as the 𝑑-fold product of 𝜆 with itself.

Moreover, if𝑋 is a ℝ𝑛-valued random variable and 𝑓 is a measurable func-
tion ℝ𝑛 → [0,∞), then we say that 𝑋 has a p.d.f. 𝑓, if 𝑋∗ℙ has the density 𝑓
w.r.t. 𝜆𝑛. ◆

Remark. Two technical points are worth mentioning here.

• One can show that the product 𝜎-algebra B⊗𝑑 is also isomorphic to the
Borel 𝜎-algebra on ℝ𝑑.

• Quite often when people talk about the Lebesgue measure 𝜆𝑑 they mean
the measure which is defined on the so called Lebesgue measurable sets,
which form a 𝜎-algebraL𝑑 ⊃ B⊗𝑑. The inclusion is strict and in fact one
can view L𝑑 as the completion of B⊗𝑑 with respect to 𝜆𝑑, meaning that

L𝑑 ≔ {𝐴 ∪ 𝑁 ∶ 𝐴 ∈ B⊗𝑑, 𝑁 ∈ N},

where

N ≔ {𝑁 ⊂ ℝ𝑑 ∶ ∃𝑁′ ∈ B⊗𝑑, 𝑁 ⊂ 𝑁′, 𝜆𝑑(𝑁′) = 0}.

Now, when working with L𝑑 there is the catch that unlike for the Borel
𝜎-algebras, it is no longer true thatL𝑑 = L𝑛 ⊗L𝑚 when 𝑑 = 𝑛+𝑚. Thus
if one wants to work with the Lebesgue measurable sets instead of Borel
sets, then the 𝑑-dimensional Lebesgue measure has to be defined as the
completion of the product of 1-dimensional measures.

The proofs of the claims in the second bullet point above are not hard but re-
quire a bit of work and are more suited to a measure theory course, so we will
skip them. The first bullet point however is easy to show and the reader is
encouraged to try and prove it. ◆

It is not quite as clear how to extend the definition of a product measure to
infinitely many spaces, but in the case of probability spaces this turns out to be
possible.

Theorem 3.9 (Product probability spaces). Let (𝛺𝑖,F𝑖, ℙ𝑖)𝑖∈𝐼 be a collection of
probability spaces indexed by an arbitrary index set 𝐼. Then there exists a unique
product probability space (𝛺,F, ℙ) with 𝛺 ≔ ∏𝑖∈𝐼 𝛺𝑖, F ≔ ⨂𝑖∈𝐼 F𝑖 and ℙ a
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probability measure that satisfies

ℙ(𝐶) = ∏
𝑖∈𝐼
ℙ𝑖(𝐶𝑖)

for all 𝐶 ⊂ 𝛺 of the form 𝐶 = ∏𝑖∈𝐼 𝐶𝑖 with 𝐶𝑖 ∈ F𝑖 for all 𝑖 ∈ 𝐼 and 𝐶𝑖 = 𝛺𝑖 for
all but finitely many 𝑖’s.

Proof. Exercise. Hint: Use Carathéodory’s extension theorem. To show count-
able additivity on the semialgebra generated by the cylinder sets, try to use sim-
ilar ideas as in Lemma 1.33: Start with the casewhere the family is countable. If
⨄∞𝑛=1 𝐴

𝑛 = 𝛺 is a partition of𝛺 into disjoint cylinder sets but∑∞𝑛=1 ℙ[𝐴𝑛] ≠ 1,
then by Fubini’s theorem there exists 𝜔1 ∈ 𝛺1 such that we have

∞

∑
𝑛=1
𝟙𝐴𝑛1 (𝜔1)

∞

∏
𝑘=2
ℙ𝑘[𝐴𝑛𝑘] ≠ 1.

By induction one can find 𝜔1,… , 𝜔𝑚 such that

∞

∑
𝑛=1
𝟙𝐴𝑛1 (𝜔1)…𝟙𝐴𝑛𝑚 (𝜔𝑚)

∞

∏
𝑘=𝑚+1
ℙ[𝐴𝑛𝑘] ≠ 1.

Derive a contradiction by considering 𝜔 = (𝜔𝑛)∞𝑛=1 ∈ 𝛺 and the set 𝐴𝑚 to
which it belongs. Can you extend to the case of an uncountable product?

3.2 Independence and products

In this sectionwewill showhow the distributions of independent randomvari-
ables are product measures and prove the product formula for expectation of
independent random variables.

Theorem3.10. Suppose that𝑋1,… ,𝑋𝑛 are independent random variables with
distributions 𝜇1,… , 𝜇𝑛. Then the law of the random vector (𝑋1,… ,𝑋𝑛) is given
by 𝜇1 ⊗⋯ ⊗ 𝜇𝑛.

Proof. Let 𝜇 be the law of the random vector (𝑋1,… ,𝑋𝑛). Then by definition
for Borel sets 𝐴1,… ,𝐴𝑛 we have

𝜇(𝐴1 ×⋯ × 𝐴𝑛) = ℙ[(𝑋1,… ,𝑋𝑛) ∈ 𝐴1 ×⋯ × 𝐴𝑛]
= ℙ[𝑋1 ∈ 𝐴1,… ,𝑋𝑛 ∈ 𝐴𝑛]
= ℙ[𝑋1 ∈ 𝐴1]…ℙ[𝑋𝑛 ∈ 𝐴𝑛]
= (𝜇1 ⊗⋯ ⊗ 𝜇𝑛)(𝐴1 ×⋯ × 𝐴𝑛).

Since the rectangles 𝐴1 × ⋯ × 𝐴𝑛 form a 𝜋-system that generates the Borel
𝜎-algebra on ℝ𝑛, we see that 𝜇 and the product measure are equal.
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As a corollary we have the following.

Proposition 3.11. Assume that 𝑋1,… ,𝑋𝑛 are random variables with densi-
ties 𝑓1,… , 𝑓𝑛 w.r.t. the Lebesgue measure. Then 𝑋1,… ,𝑋𝑛 are independent
if and only if the random vector (𝑋1,… ,𝑋𝑛) has the density 𝑓(𝑥1,… , 𝑥𝑛) =
𝑓1(𝑥1)⋯𝑓𝑛(𝑥𝑛) w.r.t. the Lebesgue measure on ℝ𝑛.

Proof. Exercise.

The main result concerning the expectation of product of two independent
random variables is now easy to derive.

Theorem 3.12. Assume that 𝑋 and 𝑌 are independent random variables and
that either𝑋,𝑌 ≥ 0 or𝑋,𝑌 ∈ 𝐿1. Then

𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌].

Proof. If 𝑋 and 𝑌 are non-negative, we have by the change-of-variables for-
mula and Fubini’s theorem that

𝔼[𝑋𝑌] = ∫∫𝑥𝑦𝑑(𝑌∗ℙ)(𝑦)𝑑(𝑋∗ℙ)(𝑥) =∫𝑥𝑑(𝑋∗ℙ)∫𝑦𝑑(𝑌∗ℙ) = 𝔼[𝑋]𝔼[𝑌].

For integrable 𝑋 and 𝑌 we may first apply the theorem to |𝑋| and |𝑌| (note
that trivially 𝜎(|𝑋|) ⊂ 𝜎(𝑋), so 𝜎(|𝑋|) and 𝜎(|𝑌|) are independent), and get
that 𝔼[|𝑋𝑌|] = 𝔼[|𝑋|]𝔼[|𝑌|] < ∞. Hence𝑋𝑌 ∈ 𝐿1, and we may again use the
change-of-variables formula and Fubini’s theorem.

It is important to note that having 𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌] does not imply in-
dependence of𝑋 and𝑌. Random variables that satisfy the condition are called
uncorrelated.

Exercise 3.13. Give an example of two random variables𝑋 and 𝑌 that are un-
correlated but not independent. ◆

The above theorem admits various generalizations. First of all a similar re-
sult holds also for 𝑛 independent randomvariables𝑋1,… ,𝑋𝑛 that are either all
non-negative or all integrable, in which case 𝔼[𝑋1⋯𝑋𝑛] = 𝔼[𝑋1]⋯𝔼[𝑋𝑛].
The proof is essentially the same as the case of two random variables.

A special case of the above is where 𝑋𝑘 = 𝐹𝑘(𝑌𝑘,1,… , 𝑌𝑘,𝑚𝑘 ) for some inde-
pendent random vectors 𝑌𝑘 ∶ 𝛺 → ℝ𝑚𝑘 and measurable functions 𝐹𝑘 ∶ ℝ𝑚𝑘 →
ℝ. For checking that random vectors are independent the following “grouping
lemma” is often useful.

Lemma 3.14. Assume that F𝑘,𝑗, 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑘, are independent
𝜎-algebras. Then the 𝜎-algebras F𝑘 ≔ 𝜎(⋃

𝑚𝑘
𝑗=1 F𝑘,𝑗) are independent.

As a corollary we have the following.
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Corollary 3.15. Suppose that 𝑋𝑘,𝑗 (1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑘, 𝑚𝑘 ≥ 1) are
independent random variables. Then the random vectors (𝑋𝑘,1,… ,𝑋𝑘,𝑚𝑘 ), 1 ≤
𝑘 ≤ 𝑛, are independent.

Proof. Let F𝑘,𝑗 ≔ 𝜎(𝑋𝑘,𝑗). Then the random vector 𝑌𝑘 ≔ (𝑋𝑘,1,… ,𝑋𝑘,𝑚𝑘 ) is
𝜎(⋃𝑚𝑘𝑗=1 F𝑘,𝑗)-measurable since 𝑌−1𝑘 (𝐴1 × ⋯ × 𝐴𝑚𝑘 ) = ⋂

𝑚𝑘
𝑗=1 𝑋−1𝑘,𝑗(𝐴𝑗) is mea-

surable for all 𝐴1 × ⋯ × 𝐴𝑚𝑘 ∈ B
⊗𝑚𝑘 and such rectangles generate the whole

product 𝜎-algebra. The claim thus follows from the grouping lemma.

The proof of the grouping lemmawill be based on the following useful result
which says that if 𝜋-systems are independent, then the 𝜎-algebras generated by
them are also independent.

Lemma 3.16. Let A1,… ,A𝑛 be independent 𝜋-systems, meaning that for all
𝐴𝑘 ∈ A𝑘 ∪ {𝛺}, 1 ≤ 𝑘 ≤ 𝑛, we have

ℙ[𝐴1 ∩⋯ ∩ 𝐴𝑛] =
𝑛

∏
𝑘=1
ℙ[𝐴𝑘].

Then 𝜎(A1),… , 𝜎(A𝑛) are independent.

Proof. Consider themeasurable space (𝛺𝑛,G), whereG ≔ 𝜎(A1)⊗⋯⊗𝜎(A𝑛).
On F⊗𝑛 there is of course the product measure ℙ⊗𝑛 which satisfies

ℙ⊗𝑛[𝐴1 ×⋯ × 𝐴𝑛] =
𝑛

∏
𝑘=1
ℙ[𝐴𝑘]

for all 𝐴𝑘 ∈ 𝜎(A𝑘), 1 ≤ 𝑘 ≤ 𝑛. On the other hand we may define a map 𝜈 on
the semialgebra formed by the product sets 𝐴1 ×⋯ × 𝐴𝑛 by setting

𝜈(𝐴1 ×⋯ × 𝐴𝑛) ≔ ℙ[𝐴1 ∩⋯ ∩ 𝐴𝑛].

Note that 𝜈 is countably additive since if 𝐴1 ×⋯×𝐴𝑛 = ⨄
∞
𝑘=1 𝐵𝑘,1 ×⋯×𝐵𝑘,𝑛,

then 𝐴1 ∩⋯∩𝐴𝑛 = ⨄
∞
𝑘=1(𝐵𝑘,1 ∩⋯∩ 𝐵𝑘,𝑛). Hence 𝜈 extends to a measure on

G, but since 𝜈 agrees with the product measure on the 𝜋-system consisting of
sets of the form 𝐴1 ×⋯×𝐴𝑛 with 𝐴𝑘 ∈ A𝑘 ∪ {𝛺}, 1 ≤ 𝑘 ≤ 𝑛, which generates
the 𝜎-algebra G, we see that the extension of 𝜈 equals the product measure and
in particular

ℙ[𝐴1 ∩⋯ ∩ 𝐴𝑛] = 𝜈(𝐴1 ×⋯ × 𝐴𝑛) = ℙ⊗𝑛[𝐴1 ×⋯ × 𝐴𝑛] =
𝑛

∏
𝑘=1
ℙ[𝐴𝑘]

for all 𝐴𝑘 ∈ 𝜎(A𝑘), 1 ≤ 𝑘 ≤ 𝑛, which proves that the 𝜎-algebras 𝜎(𝐴𝑘) are
independent.

Let us next prove the grouping lemma.
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Proof of Lemma 3.14. Let let 𝑃𝑘 be the 𝜋-system formed by all the sets of the
form 𝐴𝑘,1 ∩ ⋯ ∩ 𝐴𝑘,𝑚𝑘 with 𝐴𝑘,𝑗 ∈ F𝑘,𝑗. Then the 𝜋-systems 𝑃𝑘 are indepen-
dent and hence also the 𝜎-algebras 𝜎(𝑃𝑘) = 𝜎(⋃

𝑚𝑘
𝑗=1 F𝑘,𝑗) are independent by

Lemma 3.16.

Lemma 3.16 also has the following useful corollary.

Corollary 3.17. Random variables𝑋1,… ,𝑋𝑛 are independent if and only if

ℙ[𝑋1 ≤ 𝑡1, 𝑋2 ≤ 𝑡2,… ,𝑋𝑛 ≤ 𝑡𝑛] = ℙ[𝑋1 ≤ 𝑡1]⋯ℙ[𝑋𝑛 ≤ 𝑡𝑛]

for all 𝑡1,… , 𝑡𝑛 ∈ ℝ.

Proof. Exercise.

3.3 Conditional expectation

Our last topic in this chapter will be conditional expectation. Conditional ex-
pectation 𝔼[𝑋|G] can be thought of as in some sense the best approximation
of a random variable𝑋 given the information encoded by a 𝜎-algebra G.

Definition 3.18. Let (𝛺,F, ℙ) be a probability space,𝑋∶ 𝛺 → ℝ an integrable
random variable andG ⊂ F a 𝜎-algebra. The conditional expectation𝔼[𝑋|G]
of𝑋 with respect to G is the almost surely unique G-measurable random vari-
able which satisfies

𝔼[𝔼[𝑋|G]𝟙𝐴] = 𝔼[𝑋𝟙𝐴] (3.1)

for all 𝐴 ∈ G. ◆
Before showing that the definition makes sense, i.e. that conditional expec-

tation exists and is unique, let us try to gain a bit of intuition. It is quite natural
to require that 𝔼[𝑋|G] is G-measurable if we want to take the best approxima-
tion of 𝑋 given the information in G, but it is perhaps less clear how to think
about the defining condition (3.1). Itmight be useful to start with the following
example.

Example 3.19. Let 𝐸1,… , 𝐸𝑛 be a partition of 𝛺 with ℙ[𝐸𝑘] > 0 for all 𝑘, and
let G ≔ 𝜎(𝐸1,… , 𝐸𝑛). Now if𝑋 is a random variable, we have by (3.1) that

𝔼[𝔼[𝑋|G]𝟙𝐸𝑘 ] = 𝔼[𝑋𝟙𝐸𝑘 ].

Notice that since 𝔼[𝑋|G] is G-measurable, it must be constant on each 𝐸𝑘 –
let us call these constants 𝑎𝑘. Thus from above we get the equation 𝑎𝑘ℙ[𝐸𝑘] =
𝔼[𝑋𝟙𝐸𝑘 ], or

𝑎𝑘 =
𝔼[𝑋𝟙𝐸𝑘 ]
ℙ[𝐸𝑘]
.
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3. Independence and conditioning

In other words, 𝔼[𝑋|G](𝜔) =
𝔼[𝑋𝟙𝐸𝑘 ]
ℙ[𝐸𝑘]

for all 𝜔 ∈ 𝐸𝑘, i.e. 𝔼[𝑋|G] is obtained by
replacing𝑋 by its averages over each of the sets 𝐸𝑘. ◆

In the above example we see that taking the conditional expectation is basi-
cally just averaging out the extra randomness in order to form a guess based on
the information we have. The central property of taking averages is that if you
first average over some atomic sets 𝐸𝑘 like in the example to obtain 𝔼[𝑋|G],
then the average of 𝔼[𝑋|G] itself over unions such as 𝐸1 ∪ 𝐸2 will be the same
as the average of the original random variable𝑋 over the same set.

Now, in general G might not be given by such a simple partition as in the
example, but we can still ask is there a random variable 𝔼[𝑋|G] which is G-
measurable and preserves the averages over all sets in G. This is exactly the
content of the condition (3.1).

Let us next try to show that the definition indeed makes sense.

Theorem 3.20. For any𝑋 ∈ 𝐿1 and any 𝜎-algebra G ⊂ F the conditional expec-
tation 𝔼[𝑋|G] exists and is unique a.s.

Moreover, we have the following extension of (3.1): If𝑌 is G-measurable, then
𝑋𝑌 ∈ 𝐿1 if and only if 𝔼[𝑋|G]𝑌 ∈ 𝐿1, in which case

𝔼[𝔼[𝑋|G]𝑌] = 𝔼[𝑋𝑌].

Proof. We will use the Radon–Nikodym theorem. Assume first that𝑋 is non-
negative and consider the measure 𝜈(𝐴) = 𝔼[𝑋𝟙𝐴] on G. Clearly 𝜈 ≪ ℙ, and
thus there exists a unique Radon–Nikodym derivative𝔼[𝑋|G] ≔ 𝑑𝜈𝑑ℙ such that

𝔼[𝑋𝟙𝐴] = 𝜈(𝐴) = 𝔼[𝔼[𝑋|G]𝟙𝐴],

which is exactly what wewanted. Moreover by Lemma 2.40, we have𝑌 ∈ 𝐿1(𝜈)
if and only if𝑋𝑌 ∈ 𝐿1, in which case 𝔼[𝑋|G]𝑌 ∈ 𝐿1 and

𝔼[𝑋𝑌] = ∫𝑌𝑑𝜈 = 𝔼[𝔼[𝑋|G]𝑌].

For general 𝑋 ∈ 𝐿1, we may write 𝑋 = 𝑋+ − 𝑋− as the difference of its
positive and negative parts and define

𝔼[𝑋|G] = 𝔼[𝑋+|G] − 𝔼[𝑋−|G].

By linearity we again have 𝔼[𝔼[𝑋|G]𝑌] = 𝔼[𝑋𝑌] for all G-measurable 𝑌 with
𝑋𝑌 ∈ 𝐿1.

The first and most fundamental property of conditional expectation is that
it is a linear and continuous operator 𝐿1 → 𝐿1.
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Proposition 3.21. Let G ⊂ F be a 𝜎-algebra. Then the map 𝐿1 → 𝐿1 given by
𝑋 ↦ 𝔼[𝑋|G] is linear and continuous.

Proof. To see that the map is linear it is enough to show that

𝔼[𝑐𝑋 + 𝑌|G] = 𝑐𝔼[𝑋|G] + 𝔼[𝑌|G]

where 𝑐 ∈ ℝ and 𝑋,𝑌 ∈ 𝐿1. This is true, since for any 𝐴 ∈ G we have by the
linearity of ordinary expectation that

𝔼[(𝑐𝔼[𝑋|G] + 𝔼[𝑌|G])𝟙𝐴] = 𝑐𝔼[𝔼[𝑋|G]𝟙𝐴] + 𝔼[𝔼[𝑌|G]𝟙𝐴]
= 𝑐𝔼[𝑋𝟙𝐴] + 𝔼[𝑌𝟙𝐴] = 𝔼[(𝑐𝑋 + 𝑌)𝟙𝐴].

For continuity it is enough to show boundedness. This follows easily from
the extended formula in Theorem 3.20, since

‖𝔼[𝑋|G]‖𝐿1 = 𝔼[|𝔼[𝑋|G]|] = 𝔼[𝔼[𝑋|G] sgn(𝔼[𝑋|G])]
= 𝔼[𝑋 sgn(𝔼[𝑋|G])] ≤ 𝔼[|𝑋|] = ‖𝑋‖𝐿1 .

Proposition 3.22. Let G ⊂ F be a 𝜎-algebra and let 𝑋 and 𝑌 be two random
variables such that𝑋𝑌 and𝑋 are both integrable. Then if𝑌 is G-measurable, we
have

𝔼[𝑋𝑌|G] = 𝑌𝔼[𝑋|G].

Proof. Since for any𝐴 ∈ G we have𝑋𝑌𝟙𝐴 ∈ 𝐿1, we have by Theorem 3.20 that

𝔼[𝔼[𝑋|G]𝑌𝟙𝐴] = 𝔼[𝑋𝑌𝟙𝐴],

which implies that 𝔼[𝑋𝑌|G] = 𝑌𝔼[𝑋|G].

Computing conditional expectations can often be challenging in practice,
but in the case where we have two random variables with a joint p.d.f. and
condition onew.r.t. the otherwe have the following result. Note that by𝔼[𝑋|𝑌]
we mean 𝔼[𝑋|𝜎(𝑌)].

Proposition 3.23. Let 𝑋,𝑌 ∈ 𝐿1 be random variables with the joint density
𝑓(𝑥, 𝑦). Then for any measurable 𝜑∶ ℝ → ℝ such that 𝜑(𝑋) ∈ 𝐿1 we have
𝔼[𝜑(𝑋)|𝑌] = 𝑔(𝑌), where

𝑔(𝑦) ≔
{
{
{

∫𝜑(𝑥)𝑓(𝑥,𝑦) 𝑑𝑥
∫𝑓(𝑥,𝑦) 𝑑𝑥 , if ∫𝑓(𝑥, 𝑦) 𝑑𝑥 ≠ 0

0, otherwise
.

Proof. The random variable 𝑔(𝑌) is clearly 𝜎(𝑌)-measurable. To check (3.1),
we note that if 𝐴 ∈ 𝜎(𝑌), then 𝐴 = 𝑌−1(𝐵) for some Borel set 𝐵 ⊂ ℝ and by
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the change-of-variables formula and Fubini’s theorem we have

𝔼[𝑔(𝑌)𝟙𝐴] = ∫
ℝ2
𝑔(𝑦)𝟙𝐵(𝑦)𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫
ℝ2
𝟙{∫ 𝑓(𝑢,𝑦) 𝑑𝑢>0}(𝑦)𝟙𝐵(𝑦)

∫
ℝ
𝜑(𝑢)𝑓(𝑢, 𝑦) 𝑑𝑢

∫
ℝ
𝑓(𝑢, 𝑦) 𝑑𝑢

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫
ℝ2
𝟙{∫ 𝑓(𝑢,𝑦) 𝑑𝑢>0}(𝑦)𝟙𝐵(𝑦)𝜑(𝑢)𝑓(𝑢, 𝑦) 𝑑𝑢 𝑑𝑦

= ∫
ℝ2
𝜑(𝑢)𝟙𝐵(𝑦)𝑓(𝑢, 𝑦) 𝑑𝑢 𝑑𝑦 = 𝔼[𝜑(𝑋)𝟙𝐴].

Note that one can justify the use of Fubini’s theorem by doing first a similar
computation as above but for 𝔼[|𝑔(𝑌)|] to show that 𝑔(𝑌) ∈ 𝐿1, we leave the
details to the reader.

The following proposition shows that if we condition twice with respect to
two 𝜎-algebrasH andG, then the result will always correspond to conditioning
with respect to the 𝜎-algebra which contains less information. This is some-
times called the tower property of conditional expectation.

Proposition 3.24. Let H ⊂ G ⊂ F and assume that𝑋 ∈ 𝐿1. Then

𝔼[𝔼[𝑋|H]|G] = 𝔼[𝔼[𝑋|G]|H] = 𝔼[𝑋|H].

Proof. Exercise.

Independence and conditioning also works as one would expect: If there is
no information, the best guess is just the expectation.

Proposition 3.25. Let G ⊂ F and assume that𝑋 ∈ 𝐿1 is independent of G. Then
𝔼[𝑋|G] = 𝔼[𝑋].

Proof. Exercise.

In particular the above proposition shows that 𝔼[𝑋|{∅,𝛺}] = 𝔼[𝑋], so the
usual expectation can be viewed as a special case of conditional expectation
where we condition w.r.t. the trivial 𝜎-algebra.

Conditional probabilities can also be defined via conditional expectation.

Definition 3.26. The conditional probability ℙ[𝐴|G] of an event 𝐴 given a
𝜎-algebra G is defined by setting

ℙ[𝐴|G] ≔ 𝔼[𝟙𝐴|G]. ◆

Here are some more properties of conditional expectation. The proofs are
mostly trivial and left as an exercise.
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Proposition 3.27.The conditional expectation satisfies the following (𝑋,𝑌 are
random variables, G,H ⊂ F are 𝜎-algebras and we assume all the conditional
expectations exist. All claims hold almost surely.):

• We have 𝔼[𝔼[𝑋|G]] = 𝔼[𝑋].

• If𝑋 is G-measurable then 𝔼[𝑋|G] = 𝑋.

• If𝑋 is independent of 𝜎(𝜎(𝑌) ∪ G), then 𝔼[𝑋𝑌|G] = 𝔼[𝑋]𝔼[𝑌|G].

• If𝑋 ≥ 0 then 𝔼[𝑋|G] ≥ 0.

• If𝑋 ≥ 𝑌 then 𝔼[𝑋|G] ≥ 𝔼[𝑌|G].

• If𝑋𝑛 → 𝑋 in 𝐿1, then 𝔼[𝑋𝑛|G] → 𝔼[𝑋|G] in 𝐿1.

Proof. Exercise.

As conditional expectations are defined only up to almost sure equivalence,
it is not meaningful talk about pointwise convergence of 𝔼[𝑋𝑛|G] to 𝔼[𝑋|G].
Almost sure convergence is however still well defined and in particular mono-
tone limits work nicely.

Proposition 3.28. Let𝑋𝑛 ∈ 𝐿1 be a.s. non-negative and increasing and suppose
that the a.s. limit𝑋 = lim𝑛→∞ 𝑋𝑛 is also integrable. Then

𝔼[𝑋𝑛|G]
𝑎.𝑠.
→ 𝔼[𝑋|G].

Proof. By monotonicity the sequence 𝔼[𝑋𝑛|G] is almost surely increasing and
hence converges almost surely to some non-negative 𝑌 ∈ 𝐿0. Then by the
monotone convergence theorem we have for any 𝐴 ∈ G that

𝔼[𝑌𝟙𝐴] = lim
𝑛→∞
𝔼[𝔼[𝑋𝑛|G]𝟙𝐴] = lim

𝑛→∞
𝔼[𝑋𝑛𝟙𝐴] = 𝔼[𝑋𝟙𝐴],

showing that 𝑌 = 𝔼[𝑋|G] almost surely.

Finally let us consider conditional distributions.

Definition 3.29. Let B denote the Borel 𝜎-algebra on ℝ. If 𝑋 is a random
variable and G ⊂ F is a 𝜎-algebra, we say that a map 𝜇∶ B × 𝛺 → [0, 1] is a
regular conditional distribution for𝑋 given G, if the following hold:

• Almost surely for a fixed 𝜔 ∈ 𝛺 the map 𝐴 ↦ 𝜇(𝐴, 𝜔) is a probability
measure on ℝ.

• For a fixed 𝐴 ∈ B the map 𝜔 ↦ 𝜇(𝐴, 𝜔) is measurable and we have
𝜇(𝐴, 𝜔) = ℙ[𝑋 ∈ 𝐴|G](𝜔) a.s. ◆
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Conditional distributions are nice because they let us compute 𝔼[𝐹(𝑋)|G]
for many different 𝐹 simultaneously.

Proposition 3.30. Let 𝑋 be a random variable and G ⊂ F be a 𝜎-algebra, and
denote by 𝜇 the r.c.d. for 𝑋 given G. Then for any measurable 𝜑∶ ℝ → ℝ such
that 𝜑(𝑋) ∈ 𝐿1 we almost surely have

𝔼[𝜑(𝑋)|G](𝜔) = ∫𝜑(𝑥) 𝑑𝜇(𝑥, 𝜔).

Proof. We first note that in the case 𝜑 = 𝟙𝐸 for some 𝐸 ∈ B we have

∫𝜑(𝑥) 𝑑𝜇(𝑥, 𝜔) = ∫𝟙𝐸 𝑑𝜇(𝑥, 𝜔) = 𝜇(𝐸, 𝜔) = ℙ[𝑋 ∈ 𝐸|G] = 𝔼[𝜑(𝑋)|G]

by definition. By linearity we see that the claim holds for simple 𝜑 and by
approximation andmonotone convergence one gets the claim for non-negative
𝜑 and the final case 𝜑(𝑋) ∈ 𝐿1 follows by considering 𝜑+ and 𝜑−.

Let us next show that r.c.d.s exist.

Theorem 3.31. Let𝑋 and G be as in Definition 3.29. Then there exists a regular
conditional distribution 𝜇 for𝑋 given G.

Proof. For each 𝑞 ∈ ℚ let 𝜔 ↦ 𝐹0(𝑞, 𝜔) be a fixed pointwise defined repre-
sentative of ℙ[𝑋 ≤ 𝑞|G]. We next claim that there exists an event �̃� of full
probability such that the following hold for all 𝜔 ∈ �̃�:

• 𝑞 ↦ 𝐹0(𝑞, 𝜔) is increasing

• lim𝑞→∞ 𝐹0(𝑞, 𝜔) = 1 and lim𝑞→−∞ 𝐹0(𝑞, 𝜔) = 0

• lim𝑞′↓𝑞 𝐹(𝑞′, 𝜔) = 𝐹(𝑞, 𝜔)

The first bullet point follows since by the monotonicity of conditional expec-
tation we have almost surely 𝐹0(𝑞, 𝜔) ≤ 𝐹0(𝑞′, 𝜔) whenever 𝑞 < 𝑞′ and to
ensure that 𝐹0 is increasing it is enough to consider the intersection of all
such events for a countable number of pairs (𝑞, 𝑞′). The second point follows
from the monotonicity we just showed and the fact that by Proposition 3.28
ℙ[𝑋 ≤ 𝑛|G] → 1 a.s. as 𝑛 → ∞ and ℙ[𝑋 ≤ 𝑛|G] → 0 a.s. as 𝑛 → −∞. The
third point is similar since a.s. lim𝑛→∞ ℙ[𝑋 ≤ 𝑞 + 2−𝑛|G] = ℙ[𝑋 ≤ 𝑞|G].

Let us next define the map 𝐹∶ ℝ × 𝛺 → ℝ by setting

𝐹(𝑥, 𝜔) = inf{𝐹0(𝑞, 𝜔) ∶ ℚ ∋ 𝑞 > 𝑥}

when𝜔 ∈ �̃� and just define it as e.g. 𝐹(𝑥, 𝜔) = 𝟙[0,∞)(𝑥) for all𝜔 ∈ 𝛺⧵�̃�. Now
it is easy to check that for fixed𝜔 themap𝑥 ↦ 𝐹(𝑥, 𝜔) satisfies the assumptions
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of Theorem 1.49, and hence it is the c.d.f. of some random variable, and in
particular there exists a map 𝜇∶ B×𝛺 → [0, 1] such that for every fixed𝜔 ∈ 𝛺
the map 𝐴 ↦ 𝜇(𝐴, 𝜔) is a probability measure which satisfies

𝜇((−∞, 𝑥], 𝜔) = 𝐹(𝑥, 𝜔).

In order to 𝜇 be a r.c.d. it remains to check that for fixed 𝐴 ∈ B the map
𝜔 ↦ 𝜇(𝐴, 𝜔) is a randomvariablewhich agreeswithℙ[𝑋 ∈ 𝐴|G] almost surely.
LetA be the set of all 𝐴 for which the claim holds. ThenA is a 𝜆-system since
if𝐴 ∈ A, we have 𝜇(𝐴𝑐, 𝜔) = 1−𝜇(𝐴, 𝜔) = 1−ℙ[𝑋 ∈ 𝐴|G](𝜔) = ℙ[𝑋 ∈ 𝐴𝑐|G]
a.s. and if (𝐴𝑛)∞𝑛=1 is a disjoint sequence of elements of A, we have

𝜇(
∞

⨄
𝑛=1
𝐴𝑛, 𝜔) =

∞

∑
𝑛=1
𝜇(𝐴𝑛, 𝜔) =

∞

∑
𝑛=1
ℙ[𝑋 ∈ 𝐴𝑛|G](𝜔) = ℙ[𝑋 ∈

∞

⨄
𝑛=1
𝐴𝑛](𝜔)

almost surely. MoreoverA contains the 𝜋-system consisting of intervals of the
form (−∞, 𝑞] for some 𝑞 ∈ ℚ, and since these intervals generate B, we have
by the 𝜋-𝜆-theorem that A = B.

Remark. One can also consider general𝑇-valued random variables, but in that
case order to have the existence of r.c.d.s one needs to impose some extra con-
ditions on 𝑇. In particular the claim holds when 𝑇 is a standard Borel space,
which means that there exists a measurable bijection 𝜑∶ 𝑇 → ℝ such that also
𝜑−1 is measurable. As one would expect, the r.c.d. in this case is then a map
𝜇∶ 𝑇 × 𝛺 → [0, 1].

One can show that Borel subsets of complete separable metric spaces are
standardBorel spaceswhen endowedwith the𝜎-algebra generated by the Borel
sets. In particular ℝ𝑑 are standard Borel spaces and thus natural analogues of
Theorem 3.31 and Proposition 3.30 hold for vector-valued random variables
𝑋, so that for example the formula

𝔼[𝜑(𝑋, 𝑌)|G](𝜔) = ∫𝜑(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦, 𝜔)

holds almost surely whenever 𝜑(𝑋, 𝑌) ∈ 𝐿1. We skip the proofs even though
they are not difficult – interested readers can try to prove them by themselves
or see e.g. [1, Theorem 4.1.17]. ◆

Using r.c.d.s it is easy to generalizemany properties of the usual expectation.

Proposition 3.32.The conditional expectation satisfies:

• Jensen’s inequality: 𝔼[𝜑(𝑋)|G] ≥ 𝜑(𝔼[𝑋|G]) a.s. for convex 𝜑.
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3. Independence and conditioning

• Hölder’s inequality: For 𝑝, 𝑞 > 1 with 1𝑝 +
1
𝑞 = 1,

𝔼[|𝑋𝑌||G] ≤ (𝔼[|𝑋|𝑝|G])1/𝑝(𝔼[|𝑌|𝑞|G])1/𝑞

• Minkowski’s inequality: For 𝑝 ≥ 1,

(𝔼[|𝑋 + 𝑌|𝑝|G])1/𝑝 ≤ (𝔼[|𝑋|𝑝|G])1/𝑝 + (𝔼[|𝑌|𝑝|G])1/𝑝

Proof. Exercise.

Let us end this section by giving a geometrical interpretation to conditional
expectation. This is extra material and we won’t use it later, but it is also a good
excuse to talk a bitmore about 𝐿2 and in general it is good to know these things.

One can show that 𝑋 ↦ 𝔼[𝑋|G] is a continuous operator on 𝐿2 (exercise).
The space 𝐿2 on the other hand is special because it is a Hilbert space, i.e. its
norm is given by the inner product

⟨𝑋, 𝑌⟩𝐿2 ≔ 𝔼[𝑋𝑌].

Indeed, if 𝑋,𝑌 ∈ 𝐿2, then by Hölder’s inequality one checks that 𝑋𝑌 ∈ 𝐿1, so
the above definition makes sense, and one can also easily check that ⟨⋅, ⋅⟩𝐿2 has
all the properties of an inner product.

Given an inner product one can say that𝑋 and𝑌 are orthogonal if ⟨𝑋, 𝑌⟩𝐿2 =
𝔼[𝑋𝑌] = 0. Given a subspace 𝑉 ⊂ 𝐿2 one can define its orthocomplement
𝑉⊥ ≔ {𝑋 ∈ 𝐿2 ∶ 𝔼[𝑋𝑌] = 0 for all 𝑌 ∈ 𝑉}. Then it is a theorem that any
𝑋 ∈ 𝐿2 can be written in a unique way in the form 𝑋 = 𝑋𝑉 + 𝑋𝑉⊥ , where
𝑋𝑉 ∈ 𝑉 and 𝑋𝑉⊥ ∈ 𝑉⊥. One can also show that the map 𝑋 ↦ 𝑋𝑉 is linear
and this is called the orthogonal projection of𝑋 onto 𝑉.

Now consider the closed subspace

𝑉 = 𝐿2(G) ≔ {𝑋 ∈ 𝐿2 ∶ 𝑋 is G-measurable}.

Conditional expectation is nothing but the orthogonal projection onto the sub-
space 𝐿2(G).

Another way to express the orthogonal projection of 𝑋 onto 𝐿2(G) is to say
that it is the random variable 𝑌 ∈ 𝐿2(G) which minimizes the distance to𝑋 in
𝐿2, or in other words minimizes the variance 𝔼[|𝑋 − 𝑌|2]. We leave it as an
exercise to try to show this directly without the above theory.
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Random series and the law of large numbers

4.1 Estimating the distribution of random variables

A task that one often runs into both in theoretical settings as well as in appli-
cations is to estimate the probability that a given random variable 𝑋 lies in a
given set 𝐴 ⊂ ℝ.

One common task is to get upper bounds for the tail probability ℙ[𝑋 > 𝜆]
of 𝑋 being large. A common method to do this is to notice the following: If
𝜑∶ ℝ → [0,∞) is an increasing function with 𝜑(𝜆) > 0, then

ℙ[𝑋 ≥ 𝜆] = ℙ[𝜑(𝑋) ≥ 𝜑(𝜆)] = ℙ[𝜑(𝑋)
𝜑(𝜆)
≥ 1] = 𝔼[𝟙{ 𝜑(𝑋)𝜑(𝜆) ≥1}] ≤

𝔼[𝜑(𝑋)]
𝜑(𝜆)
.

Inequalities resulting fromvarious choices of𝜑 have been given various names:

• Choosing 𝜑(𝑥) = 𝑥𝟙[0,∞)(𝑥) we get Markov’s inequality

ℙ[|𝑋| ≥ 𝜆] ≤ 𝔼[|𝑋|]
𝜆
.

• Choosing 𝜑(𝑥) = 𝑥2𝟙[0,∞)(𝑥) we get Chebyshev’s inequality

ℙ[|𝑋| ≥ 𝜆] ≤ 𝔼[𝑋
2]
𝜆2
.

• Choosing 𝜑(𝑥) = exp(𝑡𝑥) for some 𝑡 > 0 we get the Chernoff bound

ℙ[𝑋 ≥ 𝜆] ≤ 𝔼[exp(𝑡𝑋)]
exp(𝑡𝜆)

.

Apart from tail probabilities another related problem is to show that the dis-
tribution is well-concentrated around its mean. Here we will mention the fol-
lowing Paley–Zygmund inequalitywhich can be used to show that with a rea-
sonable probability a non-negative randomvariable does not become too small
compared to its mean.

Lemma 4.1. Let 𝑋 ∈ 𝐿2 be a non-negative random variable. Then for any 𝜃 ∈
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4. Random series and the law of large numbers

[0, 1] we have

ℙ[𝑋 ≥ 𝜃𝔼[𝑋]] ≥ (1 − 𝜃)2𝔼[𝑋]
2

𝔼[𝑋2]
.

Proof. We have by the Cauchy–Schwarz inequality (Hölder’s inequality with
𝑝 = 𝑞 = 2) that

𝔼[𝑋] = 𝔼[𝑋𝟙{𝑋<𝜃𝔼[𝑋]}]+𝔼[𝑋𝟙{𝑋≥𝜃𝔼[𝑋]}] ≤ 𝜃𝔼[𝑋]+√𝔼[𝑋2]√ℙ[𝑋 ≥ 𝜃𝔼[𝑋]]

from which the claim follows by subtracting 𝜃𝔼[𝑋] on both sides, dividing by
√𝔼[𝑋2] and squaring.

4.2 Strong law of large numbers

This whole section will be devoted to the proof of the following strong law of
large numbers.

Theorem 4.2. Let (𝑋𝑛)∞𝑛=1 be a sequence of independent and identically dis-
tributed (i.i.d.) random variables in 𝐿1. Then

lim
𝑛→∞

1
𝑛

𝑛

∑
𝑘=1
𝑋𝑘 = 𝔼[𝑋1]

almost surely and in 𝐿1.
The proof will be incremental, going from weaker results towards the final

one. There will be several clever tricks along the way, but it will also allow
us to return to all the theory we have built up so far. Let us fix the notation
𝑆𝑛 ≔ ∑

𝑛
𝑘=1 𝑋𝑘. Since we will be interested in the difference between 𝑛−1𝑆𝑛 and

𝔼[𝑋1], it is also useful to define

𝐴𝑛 ≔ 𝑛−1𝑆𝑛 − 𝔼[𝑋1] =
1
𝑛

∞

∑
𝑛=1
(𝑋𝑘 − 𝔼[𝑋𝑘]),

where the sum on the right is now over independent random variables with
zero expectation. Our goal is equivalent to showing that 𝐴𝑛 → 0 a.s. and in
𝐿1.

Case of 𝐿2-random variables: Note that if 𝑋𝑘 ∈ 𝐿2, then for any 𝜀 > 0 and
𝑛 ≥ 1 we have

𝔼[|𝐴𝑛|2] = 𝑛−2𝔼[|
𝑛

∑
𝑘=1
(𝑋𝑘 − 𝔼[𝑋𝑘])|

2
] = 𝑛−1𝔼[|𝑋1 − 𝔼[𝑋1]|2,

and as the right hand side tends to 0 we get that 𝑛−1 ∑𝑛𝑘=1 𝑋𝑘 → 𝔼[𝑋1] in 𝐿
2.
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4. Random series and the law of large numbers

𝐿1-convergence: Our next step will be to remove the requirement that𝑋𝑘 ∈ 𝐿2
by a truncation argument. Let us fix 𝜆 > 0 and split each 𝑋𝑘 as the sum 𝑋𝑘 =
𝑋𝑘𝟙{|𝑋𝑘|≤𝜆} + 𝑋𝑘𝟙{|𝑋𝑘|>𝜆}. We will also write

𝐴(≤𝜆)𝑛 ≔
1
𝑛

∞

∑
𝑛=1
(𝑋𝑘𝟙|𝑋𝑘|≤𝜆 − 𝔼[𝑋𝑘𝟙|𝑋𝑘|≤𝜆])

and

𝐴(>𝜆)𝑛 ≔
1
𝑛

∞

∑
𝑛=1
(𝑋𝑘𝟙|𝑋𝑘|>𝜆 − 𝔼[𝑋𝑘𝟙|𝑋𝑘|>𝜆])

so that 𝐴𝑛 = 𝐴(≤𝜆)𝑛 + 𝐴(>𝜆)𝑛 . We have by the triangle inequality

𝔼[|𝐴𝑛|] ≤ 𝔼[|𝐴(≤𝜆)𝑛 |] + 𝔼[|𝐴(>𝜆)𝑛 |] ≤ ‖𝐴(≤𝜆)𝑛 ‖𝐿2
+ 2𝔼[|𝑋1|𝟙{|𝑋1|>𝜆}].

Since𝑋𝑘𝟙{|𝑋𝑘|≤𝜆} ∈ 𝐿
2, the 𝐿2-result we proved implies that the first term tends

to 0 as 𝑛 → ∞. On the other hand the second term tends to 0 as 𝜆 → ∞. As
𝜆 was arbitrary, we see that 𝐴𝑛 → 0 in 𝐿1 as 𝑛 → ∞. We have now proven
the 𝐿1-part of Theorem 4.2, and this also implies convergence in probability –
a result which is called the weak law of large numbers.

Almost sure convergence along geometric subsequences: Recall that from
the convergence in probability which we have now proven it follows that there
exists some subsequence (𝑛𝑘)∞𝑘=1 such that 𝑛−1𝑘 𝑆𝑛𝑘 → 𝔼[𝑋1] almost surely. We
would now like to strengthen this claim to say that this in fact holds for all
subsequences of the form 𝑛𝑘 = ⌊𝑟𝑘⌋ with 𝑟 > 1. By Borel–Cantelli lemma it is
enough to show that for all 𝜀 > 0 we have

∞

∑
𝑘=1
ℙ[|𝐴𝑛𝑘 | > 𝜀] < ∞.

Indeed, if this holds, then if we let 𝐸𝑗 be the event that there exists a random
𝑘𝑗 such that |𝐴𝑛𝑘 | ≤ 𝑗

−1 for all 𝑘 ≥ 𝑘𝑗, we have ℙ[𝐸𝑗] = 1, and the almost
sure convergence along the subsequence 𝑛𝑘 will follow by considering the full
probability event⋂∞𝑗=1 𝐸𝑗.

Since |𝐴𝑛𝑘 | > 𝜀 can only hold if at least one of |𝐴(≤𝑛𝑘)𝑛𝑘 | > 𝜀/2 or |𝐴
(>𝑛𝑘)𝑛𝑘 | > 𝜀/2

holds, we have

ℙ[|𝐴𝑛𝑘 | > 𝜀] ≤ ℙ[|𝐴
(≤𝑛𝑘)𝑛𝑘 | > 𝜀/2] + ℙ[|𝐴

(>𝑛𝑘)𝑛𝑘 | > 𝜀/2].

For the first term we notice that

ℙ[|𝐴(≤𝑛𝑘)𝑛𝑘 | > 𝜀/2] ≤
4
𝜀2
𝔼[|𝐴(≤𝑛𝑘)𝑛𝑘 |

2] ≤
4𝔼[|𝑋1|2𝟙{|𝑋1|≤𝑛𝑘}]
𝑛𝑘𝜀2

.
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We then have
∞

∑
𝑘=1
𝑛−1𝑘 𝔼[|𝑋1|2𝟙{|𝑋1|≤𝑛𝑘}] = 𝔼[|𝑋1|

2
∞

∑
𝑘=1

1
⌊𝑟𝑘⌋
𝟙{⌊𝑟𝑘⌋>|𝑋1|}]

≤ 𝔼[|𝑋1|2
∞

∑
𝑘=⌊log(|𝑋1|)/ log(𝑟)⌋

𝑟−𝑘] ≲ 𝔼[|𝑋1|].

For the second termwenote that for large enough 𝑘wehave |𝔼[𝑋1𝟙{|𝑋1|>𝑛𝑘}]| <
𝜀/2, so in order to have

|𝐴(>𝑛𝑘)𝑛𝑘 | = |
1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗𝟙{|𝑋𝑗|>𝑛𝑘} − 𝔼[𝑋1𝟙{|𝑋1|>𝑛𝑘}]| > 𝜀/2

we actually need to have |𝑋𝑗| > 𝑛𝑘 for at least one 𝑗 ∈ {1,… , 𝑛𝑘}. Thus

ℙ[|𝐴(>𝑛𝑘)𝑛𝑘 | > 𝜀/2] ≤ 𝑛𝑘ℙ[|𝑋1| > 𝑛𝑘],

but then
∞

∑
𝑘=1
𝑛𝑘ℙ[|𝑋1| > 𝑛𝑘] = 𝔼[

∞

∑
𝑘=1
𝑛𝑘𝟙|𝑋1|>𝑛𝑘 ] ≲ 𝔼[

log(|𝑋1|)/ log(𝑟)

∑
𝑘=1
𝑟𝑘] ≲ 𝔼[|𝑋1|].

Almost sure convergence along the original sequence: The final trick will
be to notice that by linearity it is enough to prove the claim in the case where
𝑋 ≥ 0. Under this assumption we can then use the fact that

1
𝑚

𝑚

∑
𝑗=1
𝑋𝑗 −
1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗 = (
𝑛𝑘
𝑚
− 1) 1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗 −
1
𝑚

𝑛𝑘
∑
𝑗=𝑚+1
𝑋𝑗 ≤ (
𝑛𝑘
𝑚
− 1) 1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗

for 𝑛𝑘 ≥ 𝑚 and

1
𝑚

𝑚

∑
𝑗=1
𝑋𝑗 −
1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗 = (
𝑛𝑘
𝑚
− 1) 1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗 +
1
𝑚

𝑚

∑
𝑗=𝑛𝑘+1
𝑋𝑗 ≥ (
𝑛𝑘
𝑚
− 1) 1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗

for 𝑛𝑘 ≤ 𝑚. In the first case choosing 𝑛𝑘 = 𝑟𝑘 ≥ 𝑚 as small as possible we see
that 𝑛𝑘𝑚 − 1 ≤ 𝑟 − 1 and thus

1
𝑚

𝑚

∑
𝑗=1
𝑋𝑗 ≤
1
𝑛𝑘

𝑛𝑘
∑
𝑗=1
𝑋𝑗 + 𝑂(𝑟 − 1),

as 𝑟 > 1 is arbitrary, we get that lim sup𝑚→∞
1
𝑚 ∑
𝑚
𝑗=1 𝑋𝑗 ≤ 𝔼[𝑋1] almost surely.

Similarly using the other inequality one obtains that lim inf𝑚→∞
1
𝑚 ∑
𝑚
𝑗=1 𝑋𝑗 ≥
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𝔼[𝑋1], which finishes the proof.

4.3 Kolmogorov’s zero–one law

Kolmogorov’s 0–1 law is a precise statement which roughly says the following:
If whether an event happens can be deduced from vanishing information, then
this event either happens almost surely or almost never.

The idea of “vanishing information” in this case is captured by the concept
of tail 𝜎-algebra.

Definition 4.3. Let (F𝑛)∞𝑛=1 be a sequence of independent 𝜎-algebras. Then
the tail 𝜎-algebra G generated by (F𝑛)∞𝑛=1 is the 𝜎-algebra defined by

G ≔
∞

⋂
𝑛=1
𝜎(
∞

⋃
𝑘=𝑛

F𝑘). ◆

A common situation is the one where we have a sequence (𝑋𝑛)∞𝑛=1 of inde-
pendent random variables and F𝑛 = 𝜎(𝑋𝑛). In this case an event 𝐸 belongs to
the tail 𝜎-algebra G if it does not depend on the first 𝑋1,… ,𝑋𝑛 for any 𝑛 ≥ 1.
A typical example would be the event 𝐸 = {lim𝑛→∞ 𝑋𝑛 exists}. The following
Kolmogorov’s 0–1 law then says that for any 𝐸 ∈ Gwe must haveℙ[𝐸] ∈ {0, 1}.

Theorem4.4. Let G be a tail 𝜎-algebra according to Definition 4.3 and let𝐸 ∈ G.
Then ℙ[𝐸] ∈ {0, 1}.

Proof. Let 𝐴 ∈ G. We will be done if we can show that 𝐴 is independent of
itself, because in that case ℙ[𝐴] = ℙ[𝐴 ∩𝐴] = ℙ[𝐴]2, which is only possible if
ℙ[𝐴] is either 0 or 1.

Notice that by definition we have 𝐴 ∈ 𝜎(⋃∞𝑘=𝑛 F𝑘) for all 𝑛 ≥ 1. Consider

the 𝜎-algebra 𝜎(⋃𝑛−1𝑘=1 F𝑘). It is generated by the𝜋-system consisting of all sets

of the form𝐴1∩⋯∩𝐴𝑛−1, where𝐴𝑘 ∈ F𝑘. Similarly 𝜎(⋃∞𝑘=𝑛 F𝑘) is generated
by the 𝜋-system consisting of all sets of the form ⋂∞𝑘=𝑛 𝐴𝑘 with 𝐴𝑘 ∈ F𝑘 and
𝐴𝑘 ≠ 𝛺 for only finitely many 𝑘. But now it is clear that these two 𝜋-systems
are independent, so the same holds for the two 𝜎-algebras. Thus in particular
𝐴 is independent of 𝜎(⋃𝑛−1𝑘=1 F𝑘) for all 𝑛.

But now one can use a similar argument to show that 𝜎(𝐴) is actually inde-
pendent of 𝜎(⋃∞𝑘=1 F𝑘). Indeed, the latter is generated by a 𝜋-system consist-
ing of all sets of the form ⋂∞𝑘=1 𝐴𝑘 with 𝐴𝑘 ∈ F𝑘 and 𝐴𝑘 ≠ 𝛺 for only finitely
many 𝑘. Since 𝐴 is independent of this 𝜋-system, it is also independent of the
generated 𝜎-algebra.
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Finally note that G ⊂ 𝜎(⋃∞𝑘=1 F𝑘), so 𝐴 is both measurable and indepen-

dent w.r.t. the 𝜎-algebra 𝜎(⋃∞𝑘=1 F𝑘).

There are many important tail events, and the following exercise presents
some of them.

Exercise 4.5. Let (𝑋𝑛)∞𝑛=1 be independent random variables. Show that the
following are tail events and thus have either probability 0 or 1:

(a) {lim𝑛→∞ 𝑋𝑛 exists}

(b) {lim𝑛→∞ ∑
𝑛
𝑘=1 𝑋𝑘 exists}

(c) {lim𝑛→∞
1
𝑛 ∑
𝑛
𝑘=1 𝑋𝑘 exists} ◆

Kolmogorov’s 0–1 law is indeed quite strong when applicable, but luckily it
does not tell us which of the two possibilities happens for a given tail event, so
we still have some interesting math to do. For example, we saw in the proof of
the law of large numbers that it still requires quite a bit of work to show that
if 𝑋𝑘 are identically distributed then the probability of the event in part (c) of
the above exercise is indeed 1 and not 0.

4.4 Kolmogorov’s three series theorem

In this section we will prove Kolmogorov’s three series theorem, which pro-
vides a sharp answer to the following question: Let (𝑋𝑛)∞𝑛=1 be a sequence of
independent random variables. When does ∑∞𝑛=1 𝑋𝑛 converge almost surely?

Theorem 4.6. Let (𝑋𝑛)∞𝑛=1 be a sequence of independent random variables,𝐾 >
0 and define 𝑌𝑛 = 𝑋𝑛𝟙{|𝑋𝑛|≤𝐾} for all 𝑛 ≥ 1. Then ∑∞𝑛=1 𝑋𝑛 converges almost
surely if and only if the following three deterministic series converge

∞

∑
𝑛=1
ℙ[|𝑋𝑛| > 𝐾],

∞

∑
𝑛=1
𝔼[𝑌𝑛] and

∞

∑
𝑛=1
𝔼[|𝑌𝑛 − 𝔼[𝑌𝑛]|2].

The proof of Theorem 4.6 will be based on the following lemma, which
shows that for random series consisting of independent terms convergence in
probability is equivalent with convergence almost surely.

Lemma 4.7. Let (𝑋𝑛)∞𝑛=1 be a sequence of independent random variables and
assume that the random variables 𝑆𝑛 ≔ ∑

𝑛
𝑘=1 𝑋𝑘 converge in probability. Then

the series ∑∞𝑛=1 𝑋𝑛 converges almost surely.

Proof. Exercise.

We will also make use of the following result.
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4. Random series and the law of large numbers

Lemma 4.8. Let 𝑛 ≥ 1 and let (𝑋𝑘)𝑛𝑘=1 be independent random variables such
that for all 1 ≤ 𝑘 ≤ 𝑛 we have 𝔼[𝑋𝑘] = 0 and |𝑋𝑘| ≤ 1 almost surely. Assume
further that

𝑛

∑
𝑘=1
𝔼[|𝑋𝑘|2] ≥ 1.

Then there exists a universal constant 𝜀 > 0 (not depending on 𝑛 or the particular
random variables (𝑋𝑘)𝑛𝑘=1) such that

ℙ[|
𝑛

∑
𝑘=1
𝑋𝑘| ≥ 𝜀] ≥ 𝜀.

Proof. Exercise.

Proof of Theorem 4.6. Let us first show that if the three series converge, then
∑∞𝑛=1 𝑋𝑛 converges almost surely. The first condition ∑∞𝑛=1 ℙ[|𝑋𝑛| > 𝐾] < ∞
implies together with the Borel–Cantelli lemma that almost surely𝑋𝑛 = 𝑌𝑛 for
𝑛 large enough and hence it is sufficient to show that∑∞𝑛=1 𝑌𝑛 converges almost
surely. Let us write 𝑆𝑛 = ∑

𝑛
𝑘=1 𝑌𝑘. For 𝑛 ≥ 𝑚 we have

𝔼[|𝑆𝑛 − 𝑆𝑚|2] = 𝔼[|
𝑛

∑
𝑘=𝑚+1
𝑌𝑘|
2
] =

𝑛

∑
𝑗,𝑘=𝑚+1
𝔼[𝑌𝑗𝑌𝑘]

=
𝑛

∑
𝑗,𝑘=𝑚+1
𝔼[𝑌𝑗]𝔼[𝑌𝑘] +

𝑛

∑
𝑘=𝑚+1
(𝔼[𝑌2𝑘 ] − 𝔼[𝑌𝑘]2)

= |
𝑛

∑
𝑘=𝑚+1
𝔼[𝑌𝑘]|

2
+
𝑛

∑
𝑘=𝑚+1
𝔼[|𝑌𝑘 − 𝔼[𝑌𝑘]|2].

Since by assumption the series∑∞𝑘=1 𝔼[𝑌𝑘] and∑
∞
𝑘=1 𝔼[|𝑌𝑘−𝔼[𝑌𝑘]|

2] converge,
we see that the right hand side tends to 0 as 𝑛,𝑚 → ∞, which shows that 𝑆𝑛 is
Cauchy in 𝐿2. Thus 𝑆𝑛 converges in probability and by Lemma 4.7 it converges
almost surely.

Let us then switch to proving the other direction and assume that ∑∞𝑛=1 𝑋𝑛
converges almost surely and try to show that the three deterministic series con-
verge. The second Borel–Cantelli lemma implies that if we had∑∞𝑛=1 ℙ[|𝑋𝑛| >
𝐾] = ∞, then a.s. we have |𝑋𝑛| > 𝐾 for infinitely many 𝑛, but this is not possi-
ble since ∑∞𝑛=1 𝑋𝑛 converges almost surely. Thus the first series ∑∞𝑛=1 ℙ[|𝑋𝑛| >
𝐾] is finite.

Let us next note that if we can show that the third series∑∞𝑛=1 𝔼[|𝑌𝑛−𝔼[𝑌𝑛]|
2]

converges almost surely, thenwe see that the sequence𝑈𝑛 = 𝑌𝑛−𝔼[𝑌𝑛] satisfies
the assumptions in the first part of the proof (with𝐾 replaced by 2𝐾) and hence
∑∞𝑛=1 𝑈𝑛 converges almost surely. As∑∞𝑛=1 𝑌𝑛 converges almost surely, this im-
plies that also∑∞𝑛=1 𝔼[𝑌𝑛] converges. Thus it remains to show the convergence

74



4. Random series and the law of large numbers

of the third series.
We can do one more reduction by noting that it is enough to prove the

convergence under the extra assumption that 𝔼[𝑌𝑛] = 0. Indeed, if we let
𝑍𝑛 = 𝑌𝑛 − 𝑌′𝑛 , where 𝑌′𝑛 is an independent copy of 𝑌𝑛 for all 𝑛, then 𝔼[𝑍𝑛] = 0
for all 𝑛 ≥ 1 and ∑∞𝑛=1 𝑍𝑛 converges almost surely. Moreover ∑∞𝑛=1 𝔼[|𝑍𝑛|

2] =
2∑∞𝑛=1 𝔼[|𝑌𝑛 − 𝔼[𝑌𝑛]|

2], so if we can show the claim for 𝑍𝑛 it will also follow
for 𝑌𝑛.

Assume thus that 𝔼[𝑌𝑛] = 0 and let again 𝑆𝑛 = ∑
𝑛
𝑘=1 𝑌𝑘, 𝑆0 = 0. We have

|𝑌𝑛| ≤ 𝐾 almost surely and by scaling wemaywithout loss of generality assume
that𝐾 = 1. Suppose, to obtain a contradiction, that∑∞𝑛=1 𝔼[|𝑌𝑛|

2] = ∞. By us-
ing induction and Lemma 4.8 we see that there exists 𝜀 > 0 and a deterministic
sequence 𝑛1 ≤ 𝑛2 ≤ … such that

ℙ[|𝑆𝑛𝑘+1 − 𝑆𝑛𝑘 | > 𝜀] ≥ 𝜀

for all 𝑘. By the second Borel–Cantelli lemma one then has that |𝑆𝑛𝑘+1 −𝑆𝑛𝑘 | > 𝜀
happens infinitely often, which contradicts the convergence of 𝑆𝑛.
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Convergence in law and the central limit
theorem

5.1 Convergence in law

This final chapter is concerned on the convergence of random variables in law.
This is a very different and much less probabilistic type of convergence than
what we have discussed earlier, since it only looks at what happens with the
laws 𝜇𝑛 ≔ 𝑋𝑛∗ℙ of the random variables. Thus one can make sense of this
type of convergence even if𝑋𝑛 are defined on different probability spaces.

Definition 5.1. Let (𝜇𝑛)∞𝑛=1 be a sequence of probability measures on (ℝ,B),
where B is the Borel 𝜎-algebra. We say that 𝜇𝑛 converge weakly to a measure
𝜇, if for every bounded continuous function ℎ∶ ℝ → ℝ we have

lim
𝑛→∞
∫ℎ(𝑥) 𝑑𝜇𝑛(𝑥) = ∫ ℎ(𝑥) 𝑑𝜇(𝑥).

If (𝑋𝑛)∞𝑛=1 is a sequence of random variables,𝑋 is another random variable,
and 𝑋𝑛∗ℙ converge weakly to 𝑋∗ℙ, then we say that 𝑋𝑛 converge in law (or
distribution) to 𝑋 and write 𝑋𝑛

𝑑
→ 𝑋. By the change-of-variables formula

this is equivalent to requiring that

𝔼[ℎ(𝑋𝑛)] → 𝔼[ℎ(𝑋)]

for every bounded continuous ℎ∶ ℝ → ℝ. ◆

Remark. We may define weak convergence and convergence in law in an anal-
ogous way for measures on ℝ𝑑 just by requiring that the convergence holds
against continuous and bounded functions ℎ∶ ℝ𝑑 → ℝ. ◆

Let us immediately note the following.

Proposition 5.2. If𝑋𝑛
ℙ
→ 𝑋 then𝑋𝑛

𝑑
→ 𝑋.

Proof. Let ℎ∶ ℝ → ℝ be bounded and continuous. By Proposition 2.16 we
have ℎ(𝑋𝑛)

ℙ
→ ℎ(𝑋), and since ℎ(𝑋𝑛) are bounded we get by the dominated

convergence theorem 𝔼[ℎ(𝑋𝑛)] → 𝔼[ℎ(𝑋)].

The above definition is the “elegant” one, since it also works analogously
for random variables taking values in any metric space. In practice one often
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5. Convergence in law and the central limit theorem

however likes to study distributions via their c.d.f.s, so let us next prove the
following characterization of convergence in law.

Theorem 5.3. Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables and 𝑋 another
random variable and let 𝐹𝑋𝑛 and 𝐹𝑋 be their respective c.d.f.s. Then 𝑋𝑛

𝑑
→ 𝑋 if

and only if 𝐹𝑋𝑛 (𝑥) → 𝐹(𝑥) for all 𝑥 ∈ ℝ such that 𝐹 is continuous at 𝑥.
Before proving the above theorem, let us note that𝐹 being continuous at 𝑥 is

essential. Consider the deterministic random variables 𝑋𝑛 = 1/𝑛 and 𝑋 = 0.
Then the law of 𝑋𝑛 is a Dirac delta measure at 1/𝑛, while the law of 𝑋 is a
Dirac delta measure at 0. Clearly for any continuous and bounded 𝑓 we have
𝑓(1/𝑛) → 𝑓(0), so𝑋𝑛

𝑑
→ 𝑋. However, 𝐹𝑋𝑛 (0) = 0 for all 𝑛 while 𝐹𝑋(0) = 1 so

𝐹𝑋𝑛 (0)↛𝐹𝑋(0). The failure does not however contradict the theorem because
𝐹𝑋(𝑥) = 𝟙[0,∞)(𝑥) is not continuous at 0.

Proof of Theorem 5.3. Assume first that 𝑋𝑛
𝑑
→ 𝑋 and that 𝑥 is a point of con-

tinuity of 𝐹. Fix 𝜀 > 0 and consider the continuous piecewise linear function
ℎ(𝑡) which is 1 for 𝑡 ≤ 𝑥, 0 for 𝑡 > 𝑥 + 𝜀 and decreases linearly from 1 to 0
between 𝑥 and 𝑥 + 𝜀. Since 𝑋𝑛

𝑑
→ 𝑋, we have 𝔼[ℎ(𝑋𝑛)] → 𝔼[ℎ(𝑋)]. Now

𝐹𝑋𝑛 (𝑥) ≤ 𝔼[ℎ(𝑋𝑛)] and 𝔼[ℎ(𝑋)] ≤ 𝐹(𝑥 + 𝜀), and hence

lim sup
𝑛→∞
𝐹𝑋𝑛 (𝑥) ≤ 𝐹(𝑥 + 𝜀),

and by letting 𝜀 → 0 and using the continuity of 𝐹 at 𝑥 we see that

lim sup
𝑛→∞
𝐹𝑋𝑛 (𝑥) ≤ 𝐹(𝑥).

On the other hand if we let 𝑔(𝑡) be the continuous piecewise linear function
which is 1 for 𝑡 ≤ 𝑥 − 𝜀, 0 for 𝑡 > 𝑥 and decreases linearly from 1 to 0 between
𝑥 − 𝜀 and 𝑥, then 𝐹𝑋𝑛 (𝑥) ≥ 𝔼[𝑔(𝑋𝑛)] and 𝔼[𝑔(𝑋)] ≥ 𝐹(𝑥 − 𝜀), and hence

lim inf
𝑛→∞
𝐹𝑋𝑛 (𝑥) ≥ 𝐹(𝑥 − 𝜀),

and by letting 𝜀 → 0 and using the continuity of 𝐹 at 𝑥 we see that

lim inf
𝑛→∞
𝐹𝑋𝑛 (𝑥) ≥ 𝐹(𝑥).

Thus lim𝑛→∞ 𝐹𝑋𝑛 (𝑥) = 𝐹(𝑥) as wanted.
The opposite direction follows from the next representation theorem and

Proposition 5.2.

Theorem5.4 (Skorokhod’s representation theorem). Let (𝐹𝑛)∞𝑛=1 and𝐹 be c.d.f.s
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such that
𝐹𝑛(𝑥) → 𝐹(𝑥)

at every continuity point 𝑥 of 𝐹. Then there exists a probability space (𝛺,F, ℙ)
and random variables (𝑋𝑛)∞𝑛=1 and 𝑋 on 𝛺 such that 𝐹𝑋𝑛 = 𝐹𝑛 for all 𝑛 ≥ 1,
𝐹𝑋 = 𝐹 and𝑋𝑛

𝑎.𝑠.
→ 𝑋.

Proof. Let (𝛺,F, ℙ) be a probability space on which a uniform random vari-
able 𝑈 taking values on (0, 1) has been defined. Recall the proof of Theo-
rem 1.49, where we defined a random variable 𝑋 with c.d.f. 𝐹 by letting 𝑋 =
𝐺(𝑈), where

𝐺(𝑡) ≔ inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝑡}.

Define𝑋𝑛 similarly by letting𝑋𝑛 = 𝐺𝑛(𝑈) (with always the same 𝑈), where

𝐺𝑛(𝑡) ≔ inf{𝑥 ∈ ℝ ∶ 𝐹𝑛(𝑥) ≥ 𝑡}.

We claim that 𝑋𝑛
𝑎.𝑠.
→ 𝑋. Let 𝐷𝐹 and 𝐷𝐺 be the sets of disconcinuity points

of 𝐹 and 𝐺 respectively. Since 𝐹 and 𝐺 are increasing, both 𝐷𝐹 and 𝐷𝐺 are
countable (exercise). Thus𝑈 is a continuity point of𝐺 almost surely. Since the
complement of𝐷𝐹 is dense, for any such𝑈 ∉ 𝐷𝐺 and for any 𝜀 > 0 there exists
numbers 𝑥1, 𝑥2 ∉ 𝐷𝐹 such that

𝑥1 < 𝐺(𝑈) < 𝑥2 and |𝑥1 − 𝑥2| < 𝜀.

This implies that
𝐹(𝑥1) < 𝑈 < 𝐹(𝑥2),

since 𝑈 = 𝐹(𝑥2) is ruled out by the fact that by 𝐺(𝑈) < 𝑥2 there exists 𝑥′ < 𝑥2
s.t. 𝐹(𝑥′) ≥ 𝑈, which means that lim𝑢→𝑈− 𝐺(𝑢) ≤ 𝑥′ < 𝑥2 ≤ lim𝑢→𝑈+ 𝐺(𝑢),
contradicting the fact that by the continuity of 𝐺 at 𝑈 we have

lim
𝑢→𝑈−
𝐺(𝑢) = lim

𝑢→𝑈+
𝐺(𝑢).

On the other hand sincewe have lim𝑛→∞ 𝐹𝑛(𝑥1) = 𝐹(𝑥1) and lim𝑛→∞ 𝐹𝑛(𝑥2) =
𝐹(𝑥2), we see that for large enough 𝑛

𝐹𝑛(𝑥1) < 𝑈 < 𝐹𝑛(𝑥2),

which implies that
𝑥1 ≤ 𝐺𝑛(𝑈) ≤ 𝑥2,

so that |𝑋𝑛 − 𝑋| = |𝐺𝑛(𝑈) − 𝐺(𝑈)| ≤ 𝜀.

Remark. Skorokhod’s representation theorem also holds for random variables
taking values in any separable metric space but the proof is a bit more compli-
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cated, see e.g. [2, Theorem 4.30]. In particular forℝ𝑑 we have the following: If
(𝜇𝑛)∞𝑛=1 is a sequence of probability measures on ℝ𝑑 that converges weakly to
a probability measure 𝜇, then there exists a probability space (𝛺,F, ℙ) and
ℝ𝑑-valued random variables (𝑋𝑛)∞𝑛=1 and 𝑋 on 𝛺 such that 𝑋𝑛

𝑑
→ 𝑋 and

(𝑋𝑛)∗ℙ = 𝜇𝑛 and𝑋∗ℙ = 𝜇. ◆
As a corollary we get the following.

Theorem 5.5. Assume that (𝑋𝑛)∞𝑛=1 is a sequence of random variables that con-
verges in law to a random variable 𝑋. Then for any continuous 𝑔∶ ℝ → ℝ the
random variables 𝑔(𝑋𝑛) converge in law to 𝑔(𝑋).

Proof. Skorokhod’s representation theorem allows us to assume that in fact
𝑋𝑛 → 𝑋 almost surely, in which case 𝑔(𝑋𝑛) → 𝑔(𝑋) almost surely, which
again implies 𝑔(𝑋𝑛)

𝑑
→ 𝑔(𝑋).

Let us next prove the so called Portmanteau theorem which gives us equiv-
alent characterisations of convergence in law.

Definition 5.6. We say that a Borel measurable set𝐴 ⊂ ℝ is a continuity set of
a randomvariable𝑋 ifℙ[𝑋 ∈ 𝜕𝐴] = 0, where 𝜕𝐴 is the (topological) boundary
of 𝐴. ◆

Theorem 5.7. Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables and 𝑋 another
random variable. Then the following are equivalent:

(a) 𝑋𝑛
𝑑
→ 𝑋

(b) 𝔼[ℎ(𝑋𝑛)] → 𝔼[ℎ(𝑋)] for all bounded and continuous ℎ∶ ℝ → ℝ

(c) lim inf𝑛→∞ ℙ[𝑋𝑛 ∈ 𝑈] ≥ ℙ[𝑋 ∈ 𝑈] for all open 𝑈 ⊂ ℝ

(d) lim sup𝑛→∞ ℙ[𝑋𝑛 ∈ 𝐹] ≤ ℙ[𝑋 ∈ 𝐹] for all closed 𝐹 ⊂ ℝ

(e) lim𝑛→∞ ℙ[𝑋𝑛 ∈ 𝐴] = ℙ[𝑋 ∈ 𝐴] for all continuity sets 𝐴 of𝑋

Proof. (a)⇔ (b) is the definition.
(b)⇒ (c): Let 𝑈 be open and choose an increasing sequence ℎ𝑚 of contin-

uous and bounded functions such that ℎ𝑚 → 𝟙𝑈 pointwise. For instance one
can set ℎ𝑚(𝑥) ≔ (𝑚 dist(𝑥, 𝑈𝑐)) ∧ 1, where dist(𝑥, 𝐴) ≔ inf{|𝑥 − 𝑦| ∶ 𝑦 ∈ 𝐴}
is the distance of 𝑥 from the set 𝐴 ⊂ ℝ. Then for any fixed 𝑚 ≥ 1 we have
ℙ[𝑋𝑛 ∈ 𝑈] ≥ 𝔼[ℎ𝑚(𝑋𝑛)] for all 𝑛 and thus

lim inf
𝑛→∞
ℙ[𝑋𝑛 ∈ 𝑈] ≥ 𝔼[ℎ𝑚(𝑋)].

The claim follows by letting 𝑚 → ∞ and using the monotone convergence
theorem.
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(c)⇔ (d)⇔ (e): Exercise.
(c)⇒ (b): Let ℎ∶ ℝ → ℝ be bounded and continuous. By considering the

positive and negative parts of ℎ separately it is enough to consider the case
ℎ ≥ 0. Let us denote 𝜇𝑛 = (𝑋𝑛)∗ℙ and 𝜇 = 𝑋∗ℙ. We have by Fubini’s theorem
that

𝔼[ℎ(𝑋𝑛)] = ∫
ℝ
ℎ(𝑥)𝑑𝜇𝑛(𝑥) = ∫

ℝ
∫
‖ℎ‖∞

0
𝟙{ℎ(𝑥)>𝑡} 𝑑𝑡 𝑑𝜇𝑛(𝑥)

= ∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋𝑛) > 𝑡] 𝑑𝑡.

By Fatou’s lemma and (c) then

lim inf
𝑛→∞
𝔼[ℎ(𝑋𝑛)] ≥ ∫

‖ℎ‖∞

0
lim inf
𝑛→∞
ℙ[ℎ(𝑋𝑛) > 𝑡] 𝑑𝑡

≥ ∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋) > 𝑡] 𝑑𝑡 = 𝔼[ℎ(𝑋)],

where we used the fact that ℙ[ℎ(𝑋𝑛) > 𝑡] = ℙ[𝑋𝑛 ∈ ℎ−1((𝑡,∞))], where by
the continuity of ℎ the set ℎ−1((𝑡,∞)) is open. Similarly we can compute that

𝔼[ℎ(𝑋𝑛)] = ∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋𝑛) ≥ 𝑡] 𝑑𝑡 = ‖ℎ‖∞ − ∫

‖ℎ‖∞

0
ℙ[ℎ(𝑋𝑛) < 𝑡] 𝑑𝑡

and thus

lim sup
𝑛→∞
𝔼[ℎ(𝑋𝑛)] = ‖ℎ‖∞ − lim inf

𝑛→∞
∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋𝑛) < 𝑡] 𝑑𝑡

≤ ‖ℎ‖∞ − ∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋) < 𝑡] 𝑑𝑡

= ∫
‖ℎ‖∞

0
ℙ[ℎ(𝑋) ≥ 𝑡] 𝑑𝑡 = 𝔼[ℎ(𝑋)].

Thus lim sup𝑛→∞ 𝔼[ℎ(𝑋𝑛)] = lim inf𝑛→∞ 𝔼[ℎ(𝑋𝑛)] = 𝔼[ℎ(𝑋)] as wanted.

Remark. The above proof works also for ℝ𝑑-valued random variables. ◆

5.2 Tightness

Often when one wants to show convergence in distribution for a given se-
quence (𝑋𝑛)∞𝑛=1 of random variables, it is useful to split the proof into two
parts: First one shows that the sequence is tight, which means that no prob-
ability mass escapes to infinity. Secondly, we will soon see that tightness then
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implies that there is a subsequence of𝑋𝑛𝑘 that converges in distribution and to
show convergence of the original sequence it is then enough to show that each
converging subsequence converges to the same limit.

Definition 5.8. A sequence (𝜇𝑛)∞𝑛=1 of probability measures onℝ is tight if for
every 𝜀 > 0 there exists a compact subset𝐾 ⊂ ℝ such that 𝜇𝑛(𝐾) ≥ 1− 𝜀 for all
𝑛 ≥ 1.

A sequence (𝑥𝑛)∞𝑛=1 of random variables is tight if their laws form a tight
sequence of probability measures. ◆

Remark. The above definition works also for random variables taking values
in ℝ𝑑 or more generally any metric space. ◆

Theorem 5.9 (Prokhorov’s theorem). A sequence (𝑋𝑛)∞𝑛=1 of random variables
is tight if and only if for every subsequence 𝑋𝑛𝑘 of 𝑋𝑛 there exists a further sub-
subsequence𝑋𝑛𝑘𝑗 which converges in law.

Proof. We prove that if (𝑋𝑛)∞𝑛=1 is tight then there exists a subsequence which
converges in law. The other direction is left as an exercise.

Assume that the sequence (𝑋𝑛)∞𝑛=1 is tight and let 𝐹𝑛 be the c.d.f. of𝑋𝑛. We
will next apply the following lemma.

Lemma 5.10 (Helly’s selection theorem). Every sequence (𝐹𝑛)∞𝑛=1 of c.d.f.s con-
tains a subsequence 𝐹𝑛𝑘 that converges to some right-continuous increasing func-
tion 𝐹 at every continuity point 𝑥 of 𝐹.

Assuming this lemma for now we will be done if 𝐹 is a c.d.f., i.e. if

lim
𝑥→−∞
𝐹(𝑥) = 0 𝑎𝑛𝑑 lim

𝑥→∞
𝐹(𝑥) = 1.

But this is clear by tightness since for any 𝜀 > 0 if 𝑀 > 0 is so large that
𝐹𝑛𝑘 (𝑥) ≥ 1 − 𝜀 for all 𝑥 ≥ 𝑀 and 𝑥 is a continuity point of 𝐹 then

𝐹(𝑥) = lim
𝑘→∞
𝐹𝑛𝑘 (𝑥) ≥ 1 − 𝜀,

showing that lim𝑥→∞ 𝐹(𝑥) = 1 and similar argument works to show the other
limit.

Thus it remains to show Lemma 5.10. The proof will be based on a diago-
nalization argument. Let (𝑞𝑛)∞𝑛=1 be an enumeration of the rationals. We will
inductively construct a sequence ((𝑛(𝑖)𝑘 )

∞
𝑘=1)∞𝑖=1 of sequences and then look at

the diagonal 𝑛(𝑘)𝑘 . We begin by simply setting 𝑛1𝑘 = 𝑘. Then assume that 𝑛(𝑖)𝑘
has been constructed and let 𝑛(𝑖+1)𝑘 be a subsequence of 𝑛(𝑖)𝑘 such that 𝐹𝑛(𝑖+1)𝑘 (𝑞𝑖)
converges to a limit 𝐹(𝑞𝑖) as 𝑘 → ∞. This is possible since 𝐹𝑛𝑖𝑘 (𝑞𝑖) is a bounded
sequence of real numbers. We thus see that the diagonal subsequence satisfies

81



5. Convergence in law and the central limit theorem

𝐹𝑛𝑘𝑘 (𝑞𝑖) → 𝐹(𝑞𝑖) for all 𝑖 ≥ 1. Extend then the definition of 𝐹 to ℝ by setting

𝐹(𝑥) ≔ inf
𝑦∈ℚ,𝑦≥𝑥
𝐹(𝑦)

for 𝑥 ∈ ℝ. The function 𝐹 is increasing since 𝐹(𝑞𝑖) ≤ 𝐹(𝑞𝑗) for 𝑞𝑖 < 𝑞𝑗 and 𝐹 is
clearly right-continuous.

It remains to show that if 𝑥 is a continuity point of𝐹 then lim𝑘→∞ 𝐹𝑛(𝑘)𝑘 (𝑥) →
𝐹(𝑥). Let 𝜀 > 0 and pick a rational 𝑞+ ≥ 𝑥 such that 𝐹(𝑞) − 𝐹(𝑥) ≤ 𝜀. Then
lim sup𝑘→∞ 𝐹𝑛(𝑘)𝑘 (𝑥) ≤ 𝐹(𝑞) ≤ 𝐹(𝑥) + 𝜀, so by letting 𝜀 → 0 we get that

lim sup
𝑘→∞
𝐹𝑛(𝑘)𝑘 (𝑥) ≤ 𝐹(𝑥).

Similarly considering 𝑞 ≤ 𝑥 such that 𝐹(𝑥) − 𝐹(𝑞) ≤ 𝜀 we get

lim inf
𝑘→∞
𝐹𝑛(𝑘)𝑘 (𝑥) ≥ 𝐹(𝑥),

which proves the claim.

Remark. Prokhorov’s theorem also holds for random variables taking values
in a separable metric space, in particularℝ𝑑. The proof is a bit more involved,
see e.g. [2, Theorem 5.19] for the ℝ𝑑 case. ◆

5.3 Characteristic functions

A useful tool in the study of the distribution of a random variable is its Fourier
transform or as people in probability like to say characteristic function.

Definition 5.11. Let 𝑋 be a random variable. The characteristic function of
𝑋 is the function 𝜑𝑋 ∶ ℝ → ℂ given by

𝜑𝑋(𝑡) ≔ 𝔼[𝑒𝑖𝑡𝑋]. ◆

A couple of remarks concerning complex valued random variables are in
order.

• The expectation of complex valued random variable𝑍 = 𝑋+𝑖𝑌with real
and imaginary parts𝑋,𝑌 ∈ 𝐿1 can be defined as 𝔼[𝑍] = 𝔼[𝑋] + 𝑖𝔼[𝑌].

• One can extend the definition of the 𝐿𝑝 spaces (𝑝 ∈ [0,∞]) to contain
complex valued random variables by saying that 𝑍 ∈ 𝐿𝑝 if both 𝑋 ∈ 𝐿𝑝
and 𝑌 ∈ 𝐿𝑝.

• The definitions of the norms/metrics in these spaces stay basically the
same formally since in the end they are all based on looking at abso-
lute distances |𝑋(𝜔) −𝑌(𝜔)| of two real numbers, but the absolute value
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makes sense for complex numbers as well. Thus for example ‖𝑍‖𝐿𝑝 =
(𝔼[|𝑍|𝑝])1/𝑝 for 𝑝 ≥ 1 or 𝑑𝐿0 (𝑍,𝑊) = 𝔼[|𝑍 −𝑊| ∧ 1].

• Similarly a family (𝑍𝑖)𝑖∈𝐼 of complex valued random variables is uni-
formly integrable if for all 𝜀 > 0 there exists 𝛿 > 0 such that 𝔼[|𝑍𝑖|𝟙𝐴] <
𝜀 for all events 𝐴 with ℙ[𝐴] < 𝛿.

• Since the definitions are formally the same except that the codomain of
random variables has been changed from ℝ to ℂ, most of the proofs of
basic theorems concerning expectations and uniform integrability also
carry throughword-by-word just by changing the codomains of the ran-
dom variables fromℝ toℂ. Arguments which split a function to its neg-
ative and positive parts to reduce to the case of non-negative functions
also usually work since in the complex case one can simply split into 4
parts corresponding positive/negative real/imaginary parts.

Now, with the above clarifications in mind, we see that the characteristic
function is well defined since 𝑒𝑖𝑡𝑋 ∈ 𝐿∞ for all 𝑡 ∈ ℝ.

A simple but very useful feature of characteristic functions is that they work
very nicely with sums of independent random variables.

Proposition 5.12. Let𝑋 and 𝑌 be independent random variables. Then

𝜑𝑋+𝑌(𝑡) = 𝜑𝑋(𝑡)𝜑𝑦(𝑡)

for all 𝑡 ∈ ℝ.

Proof. Clear.

One of the main properties of characteristic functions is that they charac-
terise the distribution. In fact we have the following inversion theorem.

Theorem 5.13. Let𝑋 be a random variable and 𝜇 = 𝑋∗ℙ be its law. Then

lim
𝑇→∞

1
2𝜋
∫
𝑇

−𝑇

𝑒−𝑖𝑎𝑡 − 𝑒−𝑖𝑏𝑡

𝑖𝑡
𝜑𝑋(𝑡) 𝑑𝑡 = 𝜇((𝑎, 𝑏)) +

1
2
𝜇({𝑎, 𝑏}).

Exercise 5.14. Show that if one knows 𝜇((𝑎, 𝑏))+ 12𝜇({𝑎, 𝑏}) for all real numbers
𝑎 < 𝑏, then one can recover the probability measure 𝜇. ◆

Proof of Theorem 5.13. Let use write

𝐼𝑇 = ∫
𝑇

−𝑇

𝑒−𝑖𝑎𝑡 − 𝑒−𝑖𝑏𝑡

𝑖𝑡
𝜑𝑋(𝑡) 𝑑𝑡.
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Note that 𝑒
−𝑖𝑎𝑡−𝑒−𝑖𝑏𝑡
𝑖𝑡 = ∫

𝑏
𝑎
𝑒−𝑖𝑥𝑡 𝑑𝑥 is bounded, so by Fubini’s theorem we have

𝐼𝑇 = ∫
𝑇

−𝑇
∫
∞

−∞

𝑒−𝑖𝑎𝑡 − 𝑒−𝑖𝑏𝑡

𝑖𝑡
𝑒𝑖𝑡𝑥 𝑑𝜇(𝑥) 𝑑𝑡 = ∫

∞

−∞
∫
𝑇

−𝑇

𝑒−𝑖𝑎𝑡 − 𝑒−𝑖𝑏𝑡

𝑖𝑡
𝑒𝑖𝑡𝑥 𝑑𝑡 𝑑𝜇(𝑥).

By doing the change of variables 𝑡 ↦ −𝑡 we have that

∫
𝑇

−𝑇

𝑒−𝑖(𝑎−𝑥)𝑡 − 𝑒−𝑖(𝑏−𝑥)𝑡

𝑖𝑡
𝑑𝑡 = ∫

𝑇

−𝑇

−𝑒𝑖(𝑎−𝑥)𝑡 + 𝑒𝑖(𝑏−𝑥)𝑡

𝑖𝑡
𝑑𝑡

so taking the average of the two sides

∫
𝑇

−𝑇

𝑒−𝑖(𝑎−𝑥)𝑡 − 𝑒−𝑖(𝑏−𝑥)𝑡

𝑖𝑡
𝑑𝑡 = ∫

𝑇

−𝑇

𝑒−𝑖(𝑎−𝑥)𝑡 − 𝑒𝑖(𝑎−𝑥)𝑡 + 𝑒𝑖(𝑏−𝑥)𝑡 − 𝑒−𝑖(𝑏−𝑥)𝑡

2𝑖𝑡
𝑑𝑡

and hence recalling that (𝑒𝑖𝑥 − 𝑒−𝑖𝑥)/(2𝑖) = sin(𝑥) we have

𝐼𝑇 = ∫
∞

−∞
(∫
𝑇

−𝑇

sin((𝑥 − 𝑎)𝑡)
𝑡
𝑑𝑡 − ∫

𝑇

𝑇

sin((𝑥 − 𝑏)𝑡)
𝑡
𝑑𝑡) 𝑑𝜇(𝑥)

= 2∫
∞

−∞
(∫
𝑇

0

sin((𝑥 − 𝑎)𝑡)
𝑡
𝑑𝑡 − ∫

𝑇

0

sin((𝑥 − 𝑏)𝑡)
𝑡
𝑑𝑡) 𝑑𝜇(𝑥)

= 2∫
∞

−∞
(∫
𝑇(𝑥−𝑎)

0

sin(𝑡)
𝑡
𝑑𝑡 − ∫

𝑇(𝑥−𝑏)

0

sin(𝑡)
𝑡
𝑑𝑡) 𝑑𝜇(𝑥).

Let us denote

𝑆(𝑢) ≔ ∫
𝑢

0

sin(𝑡)
𝑡
𝑑𝑡 = sgn(𝑢) ∫

|𝑢|

0

sin(𝑡)
𝑡
𝑑𝑡.

Then
𝐼𝑇 = 2∫

∞

−∞
(𝑆(𝑇(𝑥 − 𝑎)) − 𝑆(𝑇(𝑥 − 𝑏))) 𝑑𝜇(𝑥).

Since lim𝑢→±∞ 𝑆(𝑢) = ±
𝜋
2 (exercise), we have that

lim
𝑇→∞
(𝑆(𝑇(𝑥 − 𝑎)) − 𝑆(𝑇(𝑥 − 𝑏))) =

{{
{{
{

0, if 𝑥 < 𝑎 or 𝑥 > 𝑏
𝜋
2 , if 𝑥 ∈ {𝑎, 𝑏}
𝜋, if 𝑎 < 𝑥 < 𝑏

and the claim follows by the dominated convergence theorem.

In the case where𝜑𝑋 is integrable the inversion theorem gets a simpler form.

Theorem 5.15. Let 𝑋 be a random variable with characteristic function 𝜑𝑋. If
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∫ |𝜑𝑋(𝑡)| 𝑑𝑡 < ∞, then𝑋 has a p.d.f. 𝑓 which is bounded and continuous and

𝑓(𝑥) =
1
2𝜋
∫
∞

−∞
𝑒−𝑖𝑡𝑥𝜑𝑋(𝑡) 𝑑𝑡.

Proof. Let 𝜇 be the law of𝑋. Wemaywrite for any 𝑎 < 𝑏 the inversion theorem
as

𝜇((𝑎, 𝑏)) + 1
2
𝜇({𝑎, 𝑏}) = lim

𝑇→∞

1
2𝜋
∫
𝑇

−𝑇
∫
𝑏

𝑎
𝑒−𝑖𝑥𝑡𝜑𝑋(𝑡) 𝑑𝑥 𝑑𝑡.

Note that since 𝜑𝑋 is integrable and | ∫𝑏
𝑎
𝑒−𝑖𝑥𝑡| ≤ |𝑎−𝑏|, by the dominated con-

vergence theorem we can take the limit as 𝑇 → ∞ and apply Fubini’s theorem
to get

𝜇((𝑎, 𝑏)) + 1
2
𝜇({𝑎, 𝑏}) = 1

2𝜋
∫
𝑏

𝑎
∫
∞

−∞
𝑒−𝑖𝑥𝑡𝜑𝑋(𝑡) 𝑑𝑡 𝑑𝑥.

Letting 𝑏 → 𝑎 here shows that 𝜇({𝑎}) = 0 so there are no atoms, and

𝜇((𝑎, 𝑏)) = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

with𝑓(𝑥) = 12𝜋 ∫
∞
−∞
𝑒−𝑖𝑡𝑥𝜑𝑋(𝑡) 𝑑𝑡 as wanted. Clearly |𝑓(𝑥)| ≤ 12𝜋 ∫

∞
−∞
|𝜑𝑋(𝑡)| 𝑑𝑡

so 𝑓 is bounded, and if 𝑥𝑛 → 𝑦, then by dominated convergence theorem
𝑓(𝑥𝑛) → 𝑓(𝑦), so 𝑓 is continuous as well.

The characteristic function is basically the Fourier transform of the distri-
bution of the random variable. Let us list a few useful properties of Fourier
transforms.

Definition 5.16. Let 𝑓∶ ℝ → ℝ be integrable. The Fourier transform of 𝑓 is
the function ̂𝑓 ∶ ℝ → ℂ given by

̂𝑓(𝑡) = ∫
ℝ
𝑓(𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥. ◆

Note the minus sign in the exponential function. In particular if 𝑓 is the
probability density of some random variable𝑋, then

̂𝑓(𝑡) = 𝜑𝑋(𝑡).

Theorem 5.17.The Fourier transform satisfies the following:
(a) If ̂𝑓 is integrable, then 𝑓(𝑥) = 12𝜋 ∫ℝ

̂𝑓(𝑡)𝑒𝑖𝑡𝑥 𝑑𝑡.

(b) If 𝑓 is compactly supported and smooth1, then for any𝑁 ≥ 1 there exists
𝐶 > 0 such that | ̂𝑓(𝑡)| ≤ 𝐶1+|𝑡|𝑁 for all 𝑡 ∈ ℝ.

1Smooth means that 𝑓 has derivatives of all orders.
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(c) If 𝜇 is the law of some random variable𝑋 with characteristic function 𝜑𝑋
and 𝑓 is an integrable function such that also ̂𝑓 is integrable, then

𝔼[𝑓(𝑋)] = ∫𝑓(𝑥)𝑑𝜇(𝑥) =
1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋(𝑡) 𝑑𝑡.

Proof. (a) This is basically just a rephrasing of the already proven inversion
theorem in the case where the characteristic function was integrable and can
be proven in a similar manner.

(b) Note that by integration by parts

| ̂𝑓(𝑡)| ≤ | ∫𝑓(𝑥)𝑒−𝑖𝑡𝑥 𝑑𝑥| = | ∫
𝑑
𝑑𝑛
𝑓(𝑥) 𝑒

−𝑖𝑡𝑥

(−𝑖𝑡)𝑛
𝑑𝑥| ≤ |𝑡|−𝑛 ∫ |

𝑑
𝑑𝑛
𝑓(𝑥)| 𝑑𝑥.

for any 𝑛 ≥ 1.
(c) By using Fubini’s theorem we have

1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋(𝑡) 𝑑𝑡 =

1
2𝜋
∫∫ ̂𝑓(𝑡)𝑒𝑖𝑡𝑥𝑑𝜇(𝑥) 𝑑𝑡 = ∫𝑓(𝑥) 𝑑𝜇(𝑥).

As a corollary we obtain the following.

Theorem 5.18. Let (𝑋𝑛)∞𝑛=1 be a sequence of random variables.

(a) If 𝑋𝑛
𝑑
→ 𝑋 for some random variable 𝑋, then 𝜑𝑋𝑛 (𝑡) → 𝜑𝑋(𝑡) for all

𝑡 ∈ ℝ.

(b) If𝜑𝑋𝑛 converge to some function𝜑∶ ℝ → ℂ pointwise and𝜑 is continuous
at 0, then 𝜑 is the characteristic function of some random variable 𝑋 and
𝑋𝑛
𝑑
→ 𝑋.

Proof. (a) Since 𝑥 ↦ exp(𝑖𝑡𝑥) is bounded, the claim follows from the defini-
tion of convergence in distribution.

(b) If we can show that𝑋𝑛 is tight, then we are done by part (a) since every
subsequential limit of 𝑋𝑛 must converge to a random variable with the same
characteristic function.

Consider a smooth function𝑓∶ ℝ → ℝ such that 0 ≤ 𝑓 ≤ 𝟙[−1,1] and𝑓(0) =
1. Note that ̂𝑓 is integrable, indeed, it decays faster than any polynomial. Fix
𝜀 > 0. We have for any 𝐾 > 0 that

ℙ[|𝑋𝑛| ≤ 𝐾] ≥ 𝔼[𝑓(
𝑋𝑛
𝐾
)].

Since the characteristic function of𝑋𝑛/𝐾 equals 𝜑𝑋𝑛 (𝑡/𝐾), we have

𝔼[𝑓(
𝑋𝑛
𝐾
)] =
1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋𝑛 (𝑡/𝐾) 𝑑𝑡.
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Choose next 𝐾 so large that

1
2𝜋
∫ ̂𝑓(𝑡)(𝜑𝑋(𝑡/𝐾) − 1) 𝑑𝑡 ≤ 𝜀/2.

This is possible because of the continuity of 𝜑𝑋 at 0. By the dominated conver-
gence theorem we also have for large enough 𝑛 that

| 1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋𝑛 (𝑡/𝐾) 𝑑𝑡 −

1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋(𝑡/𝐾) 𝑑𝑡| ≤ 𝜀/2

and since (2𝜋)−1 ∫ ̂𝑓(𝑡) 𝑑𝑡 = 𝑓(0) = 1 we get

1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋𝑛 (𝑡/𝐾) ≥

1
2𝜋
∫ ̂𝑓(𝑡)𝜑𝑋(𝑡/𝐾) 𝑑𝑡 − 𝜀/2 ≥ 1 − 𝜀.

Thus ℙ[|𝑋𝑛| ≤ 𝐾] ≥ 1 − 𝜀 for large enough 𝑛 and by choosing an even larger
𝐾 if needed we can ensure this for all 𝑛, thus showing that the sequence is
tight.

5.4 Characteristic function on ℝ𝑑 and the Cramér–Wold theorem

In this section we will shortly discuss the characteristic functions ofℝ𝑑-valued
random variables.

Definition 5.19. Let𝑋 be anℝ𝑑-valued random variable. Then the character-
istic function of𝑋 is the map 𝜑𝑋 ∶ ℝ𝑑 → ℂ given by

𝜑𝑋(𝑡) ≔ 𝔼[𝑒𝑖𝑡⋅𝑋],

where 𝑡 ⋅ 𝑋 = 𝑡1𝑋1 +⋯ + 𝑡𝑛𝑋𝑛 is the dot product. ◆
An analogue of the inversion formula in this case is as follows.

Theorem 5.20. Let 𝑋 be an ℝ𝑑-valued random variable and 𝜇 = 𝑋∗ℙ be its
law. Then

lim
𝑇1,…,𝑇𝑑→∞

1
(2𝜋)𝑑
∫
𝑇1

−𝑇1
…∫
𝑇𝑑

−𝑇𝑑

𝑑

∏
𝑘=1

𝑒−𝑖𝑎𝑘𝑡𝑘 − 𝑒−𝑖𝑏𝑘𝑡𝑘
𝑖𝑡𝑘

𝜑𝑋(𝑡) 𝑑𝑡1…𝑑𝑡𝑑

= 𝜇([𝑎1, 𝑏1] × ⋯ × [𝑎𝑑, 𝑏𝑑])

assuming that [𝑎1, 𝑏1] × ⋯ × [𝑎𝑑, 𝑏𝑑] is a continuity set of𝑋.

Proof. We skip the proof, but one can essentially mimic the one we did in the
1-dimensional case.
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5. Convergence in law and the central limit theorem

Again one sees that the characteristic function of ℝ𝑑-valued random vari-
able determines its law and that Theorem 5.18 holds.

As our first application of characteristic functions we will prove the follow-
ing quite useful theorem which reduces showing convergence in law from 𝑑-
dimensions to 1 dimension.

Theorem 5.21 (Cramér–Wold theorem). Let (𝑋𝑛)∞𝑛=1, 𝑋 be a ℝ𝑑-valued ran-
domvariables. Then𝑋𝑛

𝑑
→ 𝑋 if and only if for every 𝑡 ∈ ℝ𝑑 we have 𝑡⋅𝑋𝑛

𝑑
→ 𝑡⋅𝑋.

Proof. If 𝑋𝑛
𝑑
→ 𝑋, then since the map 𝑡 ↦ 𝑡 ⋅ 𝑋 is continuous, from (a ℝ𝑑-

valued version) of Theorem 5.5 we get that 𝑡 ⋅ 𝑋𝑛
𝑑
→ 𝑡 ⋅ 𝑋.

For the other direction, note that if 𝑡 ⋅ 𝑋𝑛
𝑑
→ 𝑡 ⋅ 𝑋, then

𝜑𝑋𝑛 (𝑡) = 𝜑𝑡⋅𝑋𝑛 (1) → 𝜑𝑡⋅𝑋(1) = 𝜑𝑋(𝑡),

so the characteristic functions converge pointwise and hence𝑋𝑛
𝑑
→ 𝑋.

5.5 The moment problem

As another application of characteristic functions we will look at the moment
problem.

Definition 5.22. Let 𝑋 be a random variable and 𝑛 ≥ 1. If 𝔼[|𝑋|𝑛] < ∞, we
say call the number𝑀𝑛 ≔ 𝔼[𝑋𝑛] the 𝑛th moment of𝑋. ◆

The moment problem asks whether it is possible to construct from a list of
moments (𝑀𝑛)∞𝑛=1 a random variable 𝑋 with the given moments, and if the
answer is “yes”, whether the law of 𝑋 is unique. In general the answer to the
first question is no, and even if such a random variable exists it may fail to be
unique.

For the existence it is not so easy to give good conditions2, and we will focus
on showing that under some mild assumption on the growth of the moments
the random variable is indeed unique.

Theorem 5.23. Let𝑋 and 𝑌 be two random variables such that all the moments
𝑀𝑛 = 𝔼[𝑋𝑛] = 𝔼[𝑌𝑛] are finite. If

lim sup
𝑛→∞

|𝑀𝑛|1/𝑛

𝑛
< ∞

then𝑋 and 𝑌 have the same law.

2One can show that𝑀𝑛 is a sequence of moments of some measure on real line if and only if
the infinite matrix (𝑀𝑛+𝑚)𝑛,𝑚 is positive semi-definite, but this is usually not a very prac-
tical condition to work with.
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5. Convergence in law and the central limit theorem

Proof. It is enough to show that𝑀𝑛 determine the characteristic function of𝑋.
Note that the condition implies that there exists𝐾 > 0 such that |𝑀𝑛| ≤ 𝐾𝑛𝑛𝑛.
Now if 𝑎 ∈ ℝ and 𝑧 ∈ ℂ is such that |𝑧 − 𝑎| < 1/(𝐾𝑒) then by Stirling’s formula
we have 𝑛! ≥ 𝑛𝑛/𝑒𝑛 for large enough 𝑛 (in fact this holds for all 𝑛 ≥ 1) and thus

∞

∑
𝑛=1

|𝑧 − 𝑎|𝑛𝐾𝑛𝑛𝑛

𝑛!
≲
∞

∑
𝑛=1
(|𝑧 − 𝑎|𝐾𝑒)𝑛 < ∞,

so by Fubini’s theorem we have

𝜑𝑋(𝑧) = 𝔼[𝑒𝑖(𝑧−𝑎)𝑋𝑒𝑖𝑎𝑋] = 𝔼[
∞

∑
𝑛=1

(𝑖(𝑧 − 𝑎)𝑋)𝑛

𝑛!
𝑒𝑖𝑎𝑋]

=
∞

∑
𝑛=1

(𝑖(𝑧 − 𝑎))𝑛𝔼[𝑋𝑛𝑒𝑖𝑎𝑋]
𝑛!

.

Thus 𝜑𝑋 is an analytic function in 𝑈 = {𝑧 ∈ ℂ ∶ | Im(𝑧)| < 1/(𝐾𝑒)}, and in
particular by setting 𝑎 = 0 we see that its values in 𝐵(0, 1/𝐾) are determined
by the sequence𝑀𝑛. By analytic continuation we thus see that𝑀𝑛 determine
the values 𝜑𝑋(𝑧) for all 𝑧 ∈ 𝑈 and in particular for all 𝑧 ∈ ℝ.

Exercise 5.24. Thecondition inTheorem 5.23 is not optimal and can be sharp-
ened e.g. to Carleman’s condition

∞

∑
𝑛=1
𝑀−1/(2𝑛)2𝑛 = ∞.

This condition is however not optimal either and the proof ismore complicated
and out of the scope of this course. ◆

5.6 Central limit theorem

Like the law of large numbers, the central limit theorem is a statement about
sums 𝑆𝑛 = ∑

𝑛
𝑘=1 𝑋𝑘 of i.i.d. random variables𝑋𝑘. Where the law of large num-

bers looks at𝑛−1𝑆𝑛 wherewehave normalized the sum tohave a constantmean,
the central limit theorem instead looks at the fluctuations of 𝑆𝑛 around itsmean
on the level where it has a constant variance, namely 𝑛−1/2(𝑆𝑛 − 𝔼[𝑆𝑛]). The
surprising result is then that this converges in distribution to a normal random
variable with variance 𝔼[(𝑋1 − 𝔼[𝑋1])2].

This can also be seen as a heuristic justification for the choice of normal
randomvariables as amodel of statistical experimentswhere randomness from
many independent sources is added up.
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5. Convergence in law and the central limit theorem

Theorem 5.25. Let (𝑋𝑛)∞𝑛=1 be a sequence of i.i.d. random variables in 𝐿2. Then

𝑆𝑛 − 𝑛𝔼[𝑋1]
√𝑛

converges in law to a normal random variable withmean 0 and variance𝔼[(𝑋1−
𝔼[𝑋1])2].

Proof. We may without loss of generality assume that 𝔼[𝑋1] = 0 and 𝔼[𝑋21 ] =
1. Let 𝑍𝑛 = 𝑛−1/2𝑆𝑛. Our aim is to show that 𝑍𝑛 converges in distribution
to a standard normal random variable 𝑍. It is thus enough to show that the
characteristic functions 𝜑𝑍𝑛 (𝑡) converge pointwise to 𝑒−

𝑡2
2 = 𝔼[𝑒𝑖𝑡𝑍]. Since 𝑍𝑛

is a sum of i.i.d. random variables, we have that

𝜑𝑍𝑛 (𝑡) = (𝜑𝑛−1/2𝑋1 (𝑡))
𝑛 = (𝜑𝑋1 (𝑡/√𝑛))

𝑛.

Let us next consider 𝜑𝑋1 (𝑡) = 𝔼[𝑒
𝑖𝑡𝑋]. Note that it is differentiable since by

linearity
𝔼[𝑒𝑖(𝑡+ℎ)𝑋] − 𝔼[𝑒𝑖𝑡𝑋]

ℎ
= 𝔼[𝑒

𝑖(𝑡+ℎ)𝑋 − 𝑒𝑖𝑡𝑋

ℎ
]

and |𝑒𝑖(𝑡+ℎ)𝑋 − 𝑒𝑖𝑡𝑋| = |𝑒𝑖ℎ𝑋 − 1| ≤ |ℎ𝑋| so one can apply the dominated con-
vergence theorem. (Note that |ℎ𝑋| is the length of the arc on the unit circle
connecting the points 1 and 𝑒𝑖ℎ𝑋.) Thus 𝜑′𝑋1 (𝑡) = 𝔼[𝑖𝑋𝑒

𝑖𝑡𝑋] and in particular
𝜑′𝑋1 (0) = 𝔼[𝑖𝑋] = 0. Similarly we see that 𝜑(2)𝑋1 exists and 𝜑(2)𝑋1 (0) = −𝔼[𝑋

2] =
−1. Thus by Taylor’s theorem

𝜑𝑋1 (𝑡) = 1 −
𝑡2

2
+ 𝑜(𝑡2)

as 𝑡 → 0. This means in particular that

𝜑𝑍𝑛 (𝑡) = 𝜑𝑋1 (𝑡/√𝑛)
𝑛 = (1 − 𝑡

2

2𝑛
+ 𝑜(𝑡
2

𝑛
))𝑛.

We next note that for any 𝑎, 𝑏 ∈ ℂ with |𝑎|, |𝑏| ≤ 1 we have the general bound

|𝑎𝑛 − 𝑏𝑛| = |(𝑎 − 𝑏)(𝑎𝑛−1 + 𝑎𝑛−2𝑏 +⋯ + 𝑎𝑏𝑛−2 + 𝑏𝑛−1)| ≤ 𝑛|𝑎 − 𝑏|.

Applying this with 𝑎 = 𝜑𝑋1 (𝑡/√𝑛) and 𝑏 = 1 −
𝑡2
2𝑛 (for large enough 𝑛 so that

|𝑏| ≤ 1) we see that

|𝜑𝑍𝑛 (𝑡) − (1 −
𝑡2

2𝑛
)𝑛| ≤ 𝑛𝑜(

𝑡2

𝑛
) → 0
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5. Convergence in law and the central limit theorem

as 𝑛 → ∞. Since famously (1 − 𝑡
2

2𝑛)
𝑛 → 𝑒−

𝑡2
2 , the proof is completed.

The conditions of the central limit theorem can be relaxed in various ways.
Let us mention the following where the variables are no longer assumed to be
identically distributed and take values in ℝ𝑑.

Let us recall the definition of a multivariate normal random vector.

Definition 5.26. Let 𝐶 ∈ ℝ𝑑×𝑑 be a positive definite matrix, i.e. 𝑣𝑇𝐶𝑣 ≥ 0 for
all 𝑣 ∈ ℝ𝑑. An ℝ𝑑-valued random variable 𝑋 is said to have normal distribu-
tion with mean 𝜇 ∈ ℝ𝑑 and covariance matrix 𝐶 if𝑋 has the p.d.f.

𝑝𝑋(𝑥) =
1

(2𝜋)𝑑/2√det(𝐶)
𝑒−
1
2 (𝑥−𝜇)

𝑇𝐶−1(𝑥−𝜇).

This distribution is often denoted by𝑁(𝜇, 𝐶). ◆
Let us also denote by Cov(𝑋, 𝑌) ≔ 𝔼[(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])𝑇] ∈ ℝ𝑑×𝑑 the

covariance between two ℝ𝑑-valued random variables. Here the expectation is
taken coordinate wise.

Theorem 5.27 (Lindeberg–Feller theorem). Assume that for every 𝑛 ≥ 1 the
ℝ𝑑-valued random variables 𝑋𝑛,1,… ,𝑋𝑛,𝑘𝑛 (𝑘𝑛 ≥ 1) are independent. Further-
more, suppose that

(a) ∑𝑘𝑛𝑗=1 𝔼[𝑋𝑗] → 𝜇 ∈ ℝ𝑑

(b) ∑𝑘𝑛𝑗=1 Cov(𝑋𝑛,𝑗, 𝑋𝑛,𝑗) → 𝐶 ∈ ℝ𝑑×𝑑.

(c) For all 𝜀 > 0 we have ∑𝑘𝑛𝑗=1 𝔼[|𝑋𝑛,𝑗|2𝟙|𝑋𝑛,𝑗|>𝜀] → 0, where | ⋅ | is the Eu-
clidean norm (or more generally any norm) on ℝ𝑑.

Then

𝑆𝑛 ≔
𝑘𝑛
∑
𝑗=1
𝑋𝑛,𝑗
𝑑
→ 𝑁(𝜇, 𝐶).

Proof sketch. First of all we note that by theCramér–Wold theorem it is enough
to consider the case 𝑑 = 1. Indeed if we look at the scalars 𝑌𝑛,𝑗 ≔ 𝑡 ⋅ 𝑋𝑛,𝑗 for
some 𝑡 ∈ ℝ𝑑, then ∑𝑘𝑛𝑗=1 𝔼[𝑌𝑛,𝑗] → 𝑡 ⋅ 𝜇 and ∑

𝑘𝑛
𝑗=1 𝔼[𝑌2𝑛,𝑗] → 𝑡𝑇𝐶𝑡. The third

condition is also satisfied since it clearly holds if 𝑡 = 0 and if 𝑡 ≠ 0 we have by
Cauchy–Schwarz that

𝑘𝑛
∑
𝑗=1
𝔼[|𝑌𝑛,𝑗|2𝟙{|𝑌𝑛,𝑗|>𝜀}] ≤ |𝑡|

2
𝑘𝑛
∑
𝑗=1
𝔼[|𝑋𝑛,𝑗|2𝟙{|𝑋𝑛,𝑗|>𝜀|𝑡|−1}] → 0.
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5. Convergence in law and the central limit theorem

Hence from the one dimensional result we would get

𝑡 ⋅
𝑘𝑛
∑
𝑗=1
𝑋𝑛,𝑗 =

𝑘𝑛
∑
𝑗=1
𝑌𝑛,𝑗
𝑑
→ 𝑁(𝑡 ⋅ 𝜇, 𝑡𝑇𝐶𝑡)

for all 𝑡 ∈ ℝ𝑑 and hence since 𝑁(𝑡 ⋅ 𝜇, 𝑡𝑇𝐶𝑡)
𝑑
= 𝑡 ⋅ 𝑁(𝜇, 𝐶) the result would

follow from Cramér–Wold.
To show the one dimensional case one can pretty much just follow along the

lines of the proof of Theorem 5.25. Note that we can assume that 𝜇 = 0 by sub-
tracting from each 𝑋𝑛,𝑗 its mean 𝔼[𝑋𝑛,𝑗]. We again look at the characteristic
function of 𝑆𝑛,

𝜑𝑆𝑛 (𝑡) =
𝑘𝑛
∏
𝑗=1
𝜑𝑋𝑛,𝑗 (𝑡).

This time one needs to look at the Taylor expansion of 𝜑𝑋𝑛,𝑗 (𝑡) a bit more care-
fully. Let us fix 𝑡 ∈ ℝ. Note that

𝜑𝑋𝑛,𝑗 (𝑡) = 𝔼[𝑒
𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|≤𝜀}] + 𝔼[𝑒

𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|>𝜀}].

In the first term we may use a second order Taylor expansion 𝑒𝑖𝑥𝑡 = 1 + 𝑖𝑥𝑡 −
𝑥2𝑡2/2 + 𝑂(𝑥3) to get

𝔼[𝑒𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|≤𝜀}] = 𝔼[𝟙{|𝑋𝑛,𝑗|≤𝜀}] + 𝔼[𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|≤𝜀}]

− 𝑡
2

2
𝔼[𝑋2𝑛,𝑗𝟙{|𝑋𝑛,𝑗|≤𝜀}] + 𝑂(𝜀𝔼[𝑋

2
𝑛,𝑗]),

while for the second term we use first order Taylor expansion to get

𝔼[𝑒𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|>𝜀}] = 𝔼[𝟙{|𝑋𝑛,𝑗|>𝜀}]+𝔼[𝑖𝑡𝑋𝑛,𝑗𝟙{|𝑋𝑛,𝑗|≤𝜀}]+𝑂(𝔼[|𝑋𝑛,𝑗|
2𝟙{|𝑋𝑛,𝑗|>𝜀}]).

Adding these up we get

𝜑𝑋𝑛,𝑗 (𝑡) = 1 −
𝑡2

2
𝔼[𝑋2𝑛,𝑗] + 𝑂(𝜀𝔼[|𝑋𝑛,𝑗|2]) + 𝑂(𝔼[|𝑋𝑛,𝑗|2𝟙{|𝑋𝑛,𝑗|>𝜀}]).

Next we would like to show that
𝑘𝑛
∏
𝑗=1
𝜑𝑋𝑛,𝑗 (𝑡) −

𝑘𝑛
∏
𝑗=1
(1 − 𝑡

2

2
𝔼[𝑋2𝑛,𝑗])

goes to 0 as 𝑛 → ∞. Here instead of the inequality |𝑎𝑛 − 𝑏𝑛| ≤ 𝑛|𝑎 − 𝑏| that we
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had before we can use a more general inequality

|
𝑛

∏
𝑗=1
𝑎𝑗 −
𝑛

∏
𝑗=1
𝑏𝑗| ≤

𝑛

∑
𝑗=1
|𝑎𝑗 − 𝑏𝑗|

for all complex numbers (𝑎𝑗)𝑛𝑗=1, (𝑏𝑗)𝑛𝑗=1 with |𝑎𝑗|, |𝑏𝑗| ≤ 1 (exercise). Thus we
get

|
𝑘𝑛
∏
𝑗=1
𝜑𝑋𝑛,𝑗 (𝑡) −

𝑘𝑛
∏
𝑗=1
(1 − 𝑡

2

2
𝔼[|𝑋𝑛,𝑗|2])| ≲

𝑘𝑛
∑
𝑗=1
(𝜀𝔼[|𝑋𝑛,𝑗|2] + 𝔼[|𝑋𝑛,𝑗|2𝟙{|𝑋𝑛,𝑗|>𝜀}]),

where the right hand side tends to 𝜀𝐶 as 𝑛 → ∞. This proves the claim since
we can choose 𝜀 as small as we wish. The proof is finished either by taking log-
arithms and doing Taylor expansion, or by looking at the above computation
in the case where𝑋𝑛,𝑗 are normal r.v.s, to check that

𝑘𝑛
∏
𝑗=1
(1 − 𝑡

2

2
𝔼[|𝑋𝑛,𝑗|2]) → 𝑒−

𝑡2
2 𝐶.

5.7 Stable laws and further limit theorems

The CLT shows that for centered i.i.d. random variables (𝑋𝑛)∞𝑛=1 with finite
variance there is a universal limit for the normalized sum 𝑛−1/2(𝑋1 +⋯+𝑋𝑛).
Next it would be natural to ask what happens if the variables do not have finite
variance. For simplicity we will assume that they are however symmetric, i.e.
𝑋1
𝑑
= −𝑋1.

To answer the question, it is helpful to start by thinking backwards – what
can we say if we have a CLT-type result, saying that

𝑐𝑛(𝑋1 +⋯ + 𝑋𝑛)
𝑑
→ 𝑌

for some nonzero random variable 𝑌 and normalizing constants 𝑐𝑛 > 0? We
may rewrite this for 2𝑛 random variables as

𝑐2𝑛
𝑐𝑛
(𝑐𝑛(𝑋1 +⋯ + 𝑋𝑛) + 𝑐𝑛(𝑋𝑛+1 +⋯ + 𝑋2𝑛))

𝑑
→ 𝑌. (5.1)

Now one can check that 𝑐𝑛(𝑋1+⋯+𝑋𝑛)+𝑐𝑛(𝑋𝑛+1+⋯+𝑋2𝑛)
𝑑
→ 𝑌1+𝑌2 where

𝑌1 and 𝑌2 are independent and have the same distribution as 𝑌. Furthermore,
it is also not hard to prove that in order to have convergence in (5.1) also 𝑐2𝑛𝑐𝑛
has to converge to some positive constant which we will call 𝑑2. Hence we get
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in particular the functional equation

𝜑𝑌(𝑡) = (𝜑𝑌(𝑑2𝑡))2

for all 𝑡 ∈ ℝ.
Next one can ask what are all the functions 𝜑𝑌 that satisfy this functional

equation. For instance we can check that if 𝑌 = 𝑐 ≠ 0 is a constant, then this
implies that 𝑒𝑖𝑡𝑐 = 𝑒𝑖2𝑑2𝑡𝑐 for all 𝑡, so that 𝑑2 = 1/2 and in particular 𝑐2𝑛 =
2−𝑛𝑐1 + 𝑜(2−𝑛) corresponds to the normalization appearing in the law of large
numbers and we would have 𝑌 = 0 which is a contradiction. Thus we may
from now on assume that 𝑌 is not constant.

In general it however unfortunately seems like there might still be quite a
few solutions, since basically given e.g. any positive real function 𝑓 on [𝑑2, 1]
with 𝑓(𝑑2)2 = 𝑓(1) one can uniquely extend 𝑓 into a function 𝑓∶ (0,∞] that
satisfies the functional equation for positive 𝑡. One also has lim𝑡→0+ 𝑓(𝑡) = 1
and setting𝑓(𝑡) = 𝑓(−𝑡) for 𝑡 < 0 gives a functionwhich satisfies the functional
equation and even has 𝑓(0) = 1. This is still not necessarily a characteristic
function of some probability measure, but it indicates that perhaps a bit more
information is needed to nail things down.

Luckily we can do a similar splitting as before, but this time into 3 parts to
get an additional functional equation

𝜑𝑌(𝑡) = (𝜑𝑌(𝑑3𝑡))3.

This should really help us fix things since now every 𝜑𝑌(𝑡) can be related to
𝜑𝑌(1) by multiplying by suitable powers of 𝑑2 and 𝑑3.

Lemma 5.28. Let 𝑥 and 𝑦 be two positive real numbers.

(a) Then there exist two sequences (𝑎𝑘)∞𝑘=1 and (𝑏𝑘)∞𝑘=1 of nonzero integers such
that 𝑥𝑎𝑘𝑦𝑏𝑘 → 1.

(b) Moreover if log(𝑥)/ log(𝑦) is irrational, then for any 𝑡 > 0 there exist two
sequences (𝑎𝑘)∞𝑘=1 and (𝑏𝑘)∞𝑘=1 such that 𝑥𝑎𝑘𝑦𝑏𝑘 → 𝑡.

Proof. Exercise.

To characterise𝜑 it is perhaps easiest to startwith the functionℎ(𝑡) ≔ |𝜑𝑌(𝑡)|,
since then we can take roots and obtain the more general functional equation

ℎ(𝑡) = (ℎ(𝑑𝑎2𝑑𝑏3𝑡))2
𝑎3𝑏

for all 𝑎, 𝑏 ∈ ℤ.
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Since 𝑌 is not a constant, there exists 𝑡 ∈ ℝ such that 0 < |ℎ(𝑡)| < 1. 3 Then
by choosing 𝑎𝑘 and 𝑏𝑘 as in the lemma, we see that

ℎ(𝑡) = (ℎ(𝑑𝑎𝑘2 𝑑
𝑏𝑘
3 𝑡))2

𝑎𝑘3𝑏𝑘 .

Since 𝑑𝑎𝑘2 𝑑
𝑏𝑘
3 𝑡 → 𝑡, we must have 2𝑎𝑘3𝑏𝑘 → 1. Taking logarithms we see that

𝑎𝑘 log(2) + 𝑏𝑘 log(3) → 0, and 𝑎𝑘 log(𝑑2) + 𝑏𝑘 log(𝑑3) → 0. This implies that
log(𝑑2)
log(𝑑3)
= log(2)

log(3) . In particular if we write 𝑑2 = 2−𝛽 for some 𝛽, then 𝑑3 = 3−𝛽.
Having identified the relationship between 𝑑2 and 𝑑3 we now actually see

that since log(2)/ log(3) is irrational, for any 𝑡 > 0 we can in fact choose se-
quences (𝑎𝑘)∞𝑘=1 and (𝑏𝑘)∞𝑘=1 so that 2−𝑎𝑘𝛽3−𝑏𝑘𝛽 → 𝑡. The equation

ℎ(1) = ℎ(2−𝑎𝑘𝛽3−𝑏𝑘𝛽)2
𝑎𝑘3𝑏𝑘

then implies by continuity that

ℎ(𝑡) = ℎ(1)𝑡
1/𝛽
.

Writing ℎ(1) = 𝑒−𝑐 for some 𝑐 > 0, we have that

ℎ(𝑡) = 𝑒−𝑐𝑡
1/𝛽
.

Finally since 𝜑𝑌 is continuous and real (since 𝑌 is symmetric), we must have
that 𝜑𝑌(𝑡) = 𝑒−𝑐|𝑡|

1/𝛽
for some 𝑐, 𝛽 > 0. Probability distribution with such

characteristic functions are called stable laws.

Definition 5.29. For 𝛼 ∈ (0, 2] and 𝑐 ≥ 0 random variable 𝑌 is said to have a
symmetric 𝛼-stable distribution with parameter 𝑐 if its characteristic func-
tion is of the form

𝜑𝑌(𝑡) = 𝑒−𝑐|𝑡|
𝛼
. ◆

The word stable refers to the fact that sums of independent 𝛼-stable random
variables stay 𝛼-stable.

There is no point in extending the definition to 𝛼 > 2 since in this case 𝜑𝑌
will be twice differentiable which will imply that 𝔼[𝑌2] = 0, so 𝑌

𝑎.𝑠.
= 0 (details

left to the reader).
To see that for 𝛼 ≤ 2 the function 𝑒−𝑐|𝑡|

𝛼
is a characteristic function of a ran-

dom variable is a bit tricky since for 𝛼 ∉ {1/2, 1, 2} the corresponding p.d.f. has
no formula in terms of elementary functions. To show the existence of such
stable laws one can e.g. take (𝑋𝑛) a sequence of i.i.d. random variables with
3Indeed, if one picks two disjoint intervals [𝑎, 𝑏] and [𝑐, 𝑑] such that 𝑌 positive probability of

hitting either of them, then for small enough 𝑡 > 0 we have [𝑡𝑎, 𝑡𝑏], [𝑡𝑐, 𝑡𝑑] ⊂ [−𝜋, 𝜋] and
disjoint, so |𝔼[𝑒𝑖𝑡𝑌]| < 1 because |𝔼[𝑒𝑖𝑡𝑌]| = 1 holds if and only if 𝑒𝑖𝑡𝑌 is constant almost
surely.
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ℙ[𝑋𝑛 > 𝜆] = ℙ[𝑋𝑛 < −𝜆] = 𝑥−𝛼/2 for all 𝑥 > 1. Then the characteristic func-
tions of (𝑋1 +⋯+𝑋𝑛)/𝑛1/𝛼 tend to 𝑒−𝐶|𝑡|

𝛼
for some 𝐶 > 0. See [1, Section 3.8]

for details and more about stable laws.
The end.
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Metrics and pseudometrics

In this appendix we give a very minimal review of metric and pseudometric
spaces.

Definition A.1. Let𝑋 be a set. A pseudometric 𝑑 on𝑋 is a map 𝑑∶ 𝑋 ×𝑋 →
[0,∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

• 𝑑(𝑥, 𝑥) = 0 (identity)

• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry)

• 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality)

The pseudometric 𝑑 is a metric if it satisfies the stronger property

• 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. (identity and indiscernibles)

The pair (𝑋, 𝑑) is called a (pseudo)metric space. ◆
Any pseudometric space can be made into a metric space by identifying the

points with distance 0 from each other, i.e. considering the equivalence rela-
tion 𝑥 ∼ 𝑦 ⇔ 𝑑(𝑥, 𝑦) = 0 and defining on the set of equivalence classes 𝑋/ ∼
the metric ̃𝑑([𝑥], [𝑦]) = 𝑑(𝑥, 𝑦). We leave it to the reader to check that ∼ is
an equivalence relation and that ̃𝑑 is a well-defined metric. For instance the
Ky Fan metric 𝑑𝐾𝐹 from Section 2.2 is only a pseudometric on the space of all
random variables, but becomes a metric once we identify almost surely equal
random variables.

A pseudometric 𝑑 induces a topology 𝜏𝑑 on 𝑋 where a set 𝑈 ⊂ 𝑋 is open if
and only if for every 𝑥 ∈ 𝑈 there exists 𝑟 > 0 such that the open ball 𝐵𝑑(𝑥, 𝑟) ≔
{𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) < 𝑟} is contained in𝑈. This topology is Hausdorff if and only
if 𝑑 is a metric.

In particular one easily checks the following.

Proposition A.2. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be two pseudometric spaces and let
𝑓∶ 𝑋 → 𝑌 be a function. Then 𝑓 is continuous at 𝑥 ∈ 𝑋 if and only if for every
𝜀 > 0 there exists 𝛿 > 0 such that 𝑓(𝐵𝑑𝑋 (𝑥, 𝛿)) ⊂ 𝐵𝑑𝑌 (𝑓(𝑥), 𝜀).

One of themost useful properties of pseudometric spaces is that their topol-
ogy can alternatively be characterized using sequences.

DefinitionA.3. Let (𝑋, 𝑑) be a pseudometric space and suppose that (𝑥𝑛)∞𝑛=1 is
a sequence of points in𝑋. Then we say that 𝑥𝑛 converges to a point 𝑥 ∈ 𝑋 and
write 𝑥𝑛 → 𝑥 if and only if 𝑑(𝑥𝑛, 𝑥) → 0. ◆
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In a metric space the limits of sequences are unique but note that if we have
𝑑(𝑥, 𝑦) = 0 for some 𝑥 ≠ 𝑦 in a pseudometric space, then every sequence that
converges to 𝑥 also converges to 𝑦.

The closure of a set is nicely described using sequences.

PropositionA.4. Let (𝑋, 𝑑) be a pseudometric space and let𝐴 ⊂ 𝑋. Then 𝑥 ∈ �̄�
(the topological closure of𝐴) if and only if there exists a sequence (𝑎𝑛)∞𝑛=1 of points
in 𝐴 such that 𝑎𝑛 → 𝑥.

Proof. Suppose first that 𝑥 ∈ �̄�. Then every open ball 𝐵𝑛 = 𝐵𝑑(𝑥, 1/𝑛) inter-
sects 𝐴 and we may pick 𝑎𝑛 ∈ 𝐵𝑛 ∩ 𝐴. Clearly 𝑎𝑛 → 𝑥.

Conversely suppose that 𝑎𝑛 → 𝑥 for some sequence (𝑎𝑛)∞𝑛=1 of points in 𝐴.
If 𝑈 is any open neighbourhood of 𝑥 then it contains an open ball 𝐵𝑑(𝑥, 𝑟) for
some 𝑟 > 0 and by definition 𝑎𝑛 ∈ 𝐵𝑑(𝑥, 𝑟) for all 𝑛 large enough. Hence
𝑈 intersects 𝐴 and as 𝑈 was arbitrary we have 𝑥 ∈ �̄�.

In particular a set 𝐴 ⊂ 𝑋 is closed if and only if the limits of all converging
sequences in 𝐴 stay in 𝐴. Thus closed sets are determined by converging se-
quences and as the open sets are exactly the complements of closed sets, also
the topology is determined by converging sequences.

Basic topological notions such as continuity can also be stated in terms of
sequences.

Proposition A.5. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be pseudometric spaces and 𝑓∶ 𝑋 →
𝑌 a function. Then 𝑓 is continuous at 𝑥 ∈ 𝑋 if and only if for every sequence
𝑥𝑛 → 𝑥 we have 𝑓(𝑥𝑛) → 𝑓(𝑥).

Proof. If 𝑓 is continuous at 𝑥 and 𝑥𝑛 → 𝑥, then for any 𝜀 > 0 we may pick
𝛿 > 0 such that 𝑓(𝐵𝑑𝑋 (𝑥, 𝛿)) ⊂ 𝑓(𝐵𝑑𝑌 (𝑓(𝑥), 𝜀)). As 𝑥𝑛 ∈ 𝐵𝑋(𝑥, 𝛿) eventually,
we see that 𝑓(𝑥𝑛) ∈ 𝐵𝑑𝑌 (𝑓(𝑥), 𝜀) eventually which (since 𝜀 > 0 was arbitrary)
implies that 𝑓(𝑥𝑛) → 𝑓(𝑥).

Conversely suppose that 𝑓 is not continuous at 𝑥. Then we may pick 𝜀 >
0 such that for every 𝑛 ≥ 1 we have 𝑓(𝐵𝑑𝑋 (𝑥, 1/𝑛)) ⊄ 𝑓(𝐵𝑑𝑌 (𝑓(𝑥), 𝜀)). Letting
𝑥𝑛 ∈ 𝐵𝑑𝑋 (𝑥, 1/𝑛) be such that 𝑑𝑌(𝑓(𝑥𝑛), 𝑓(𝑥)) > 𝜀 we thus get a sequence
𝑥𝑛 → 𝑥 such that 𝑓(𝑥𝑛)↛𝑓(𝑥).

A stronger property than continuity is uniform continuity, which is not any-
more a purely topological notion.

Definition A.6. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be pseudometric spaces and 𝑓∶ 𝑋 →
𝑌 a function. We say that 𝑓 is uniformly continuous if for every 𝜀 > 0 there
exists 𝛿 > 0 such that 𝑑𝑋(𝑥, 𝑥′) < 𝛿 implies 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) < 𝜀. ◆

A function𝑓∶ 𝑋 → 𝑌 between pseudometric spaces is Lipschitz if and only
if there exists 𝐾 > 0 such that 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑𝑋(𝑥, 𝑥′) for all 𝑥, 𝑥′ ∈ 𝑋.
Lipschitz functions are hence uniformly continuous (choose 𝛿 = 𝜀/𝐾 in the
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definition). A very important special case is that of an isometry, which means
that 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) = 𝑑𝑋(𝑥, 𝑥′) for all 𝑥, 𝑥′ ∈ 𝑋.

More generally uniformly continuous functions can be characterized as fol-
lows.

Proposition A.7. Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be pseudometric spaces. A function
𝑓∶ 𝑋 → 𝑌 is uniformly continuous if and only if there exists an increasing func-
tion 𝜑∶ [0,∞) → [0,∞] (possibly allowing the value∞) such that 𝜑(𝑡) → 0 as
𝑡 → 0, 𝜑(0) = 0 and

𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝜑(𝑑𝑋(𝑥, 𝑥′))

for all 𝑥, 𝑥′ ∈ 𝑋.

Proof. If such 𝜑 exists, then for every 𝜀 > 0we can find 𝛿 > 0 such that 𝜑(𝑡) < 𝜀
when 𝑡 < 𝛿, and thus 𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) < 𝜀when 𝑑𝑋(𝑥, 𝑥′) < 𝛿, showing that 𝑓
is uniformly continuous. If on the other hand 𝑓 is uniformly continuous then
defining

𝜑(𝑡) = sup{𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) ∶ 𝑑𝑋(𝑥, 𝑥′) ≤ 𝑡}.

it is easy to check that 𝜑 satisfies the needed properties.

A function 𝜑 as in the above proposition is called a modulus of continuity
of 𝑓.

Uniform continuous functions can be thought of as functions that at least
on small enough scales stretch the distances in a uniform manner. This makes
them useful for example when studying Cauchy sequences.

Definition A.8. Let (𝑋, 𝑑) be a pseudometric space. A sequence (𝑥𝑛)∞𝑛=1 of
points in𝑋 isCauchy if and only if for every 𝜀 > 0 there exists𝑁 ≥ 1 such that
𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑛,𝑚 ≥ 𝑁. ◆

Note that if 𝑓∶ 𝑋 → 𝑌 is uniformly continuous and (𝑥𝑛)∞𝑛=1 is a Cauchy
sequence in𝑋 then 𝑓(𝑥𝑛) is a Cauchy sequence in 𝑌.

Cauchy sequences give an intrinsic way of saying which sequences should
converge because their points get closer and closer together. It can however
happen that the space is missing the anticipated limit point. For instance in
(ℚ, | ⋅ |) the recursively defined sequence 𝑥1 = 1, 𝑥𝑛 = 1 +

1
𝑥𝑛−1

for 𝑛 ≥ 2 is

Cauchy but it converges to the golden ratio 1+√52 which is an irrational number.

Definition A.9. A pseudometric space (𝑋, 𝑑) is complete if every Cauchy se-
quence in𝑋 converges. ◆

A central result is that any metric space can be completed in an essentially
uniqueway by adding some points. For pseudometric spaces it is a bit less clear
what would be the right completion since one can always addmore points with
distance 0 to some existing point. There is a unique Hausdorff completion of a
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pseudometric space but this is just the completion of the induced metric space
𝑋/ ∼mentioned above and therefore loses the original information on equidis-
tant points. Therefore we will only discuss completions of metric spaces.

Definition A.10. A completion of a metric space𝑋 is a pair (�̂�, 𝜄) where �̂� is
a complete metric space and 𝜄 ∶ 𝑋 → �̂� is an isometry such that 𝜄(𝑋) is dense
in �̂�. ◆

The main result for completions is the following.

Theorem A.11. Every metric space has a completion.
We will skip the proof since you have probably already seen it and also be-

cause we will only need completions of normed spaces which we will discuss
in Appendix B. The standard and perhaps most principled way of construct-
ing the completion would be to define �̂� as the set of Cauchy sequences on
𝑋, modulo the equivalence relation that two Cauchy sequences (𝑥𝑛)∞𝑛=1 and
(𝑦𝑛)∞𝑛=1 are equivalent if 𝑑𝑋(𝑥𝑛, 𝑦𝑛) → 0. One can then proceed to define

𝜄(𝑥) ≔ [(𝑥, 𝑥,… )] and 𝑑�̂�([𝑥𝑛], [𝑦𝑛]) ≔ lim
𝑛→∞
𝑑𝑋(𝑥𝑛, 𝑦𝑛)

and show that this metric is well-defined and complete and that 𝜄 is an isom-
etry. Another somewhat shorter proof of existence goes through the so called
Kuratowski embedding, which embeds𝑋 isometrically into a complete metric
space. One can then define the completion of 𝑋 by taking the closure of 𝑋
inside this bigger space.

The specific construction of the completion is however usually not impor-
tant since once we know that they exist there are cleaner ways to characterise
them:

Proposition A.12. A completion (�̂�, 𝜄) of a metric space𝑋 satisfies and is char-
acterised up to an isomorphism1 by the following universal property: If 𝑓∶ 𝑋 →
𝑌 is a uniformly continuous map from𝑋 to a complete metric space 𝑌 then there
is a unique uniformly continuous extension ̂𝑓 ∶ �̂� → 𝑌 satisfying 𝑓 = ̂𝑓 ∘ 𝜄.

Proof. Suppose first that 𝑓∶ 𝑋 → 𝑌 is a uniformly continuous map. As 𝜄(𝑋)
is dense in �̂�, for any �̂� ∈ �̂� there is a sequence 𝑥𝑛 ∈ 𝑋 such that 𝜄(𝑥𝑛) → �̂�.
Then as 𝑓 is uniformly continuous, the sequence 𝑓(𝑥𝑛) is Cauchy and thus
converges to some limit in 𝑌 which we call ̂𝑓(𝑥). Moreover if we had picked
another sequence 𝜄(𝑥′𝑛) → 𝑥, then 𝑑𝑌(𝑓(𝑥′𝑛), 𝑓(𝑥𝑛)) ≤ 𝜑(𝑑𝑋(𝑥𝑛, 𝑥′𝑛)) → 0,
where 𝜑 is the modulus of continuity of 𝑓. Thus ̂𝑓 is a well-defined function
and clearly𝑓 = ̂𝑓∘𝜄 as well. It is moreover uniformly continuous with the same
modulus of continuity since for any �̂�, ̂𝑦 ∈ �̂� we may pick sequences (𝑥𝑛)∞𝑛=1

1An isomorphism between two such pairs (�̂�1, 𝜄1) and (�̂�2, 𝜄2) is a map 𝑆∶ �̂�1 → �̂�2 which
is an isometric isomorphism and satisfies 𝜄2 = 𝑆 ∘ 𝜄1.
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and (𝑦𝑛)∞𝑛=1 with 𝜄(𝑥𝑛) → �̂� and 𝜄(𝑦𝑛) → ̂𝑦 and then

𝑑𝑌( ̂𝑓(�̂�), ̂𝑓( ̂𝑦)) = lim
𝑛→∞
𝑑𝑌(𝑓(𝑥𝑛), 𝑓(𝑦𝑛)) ≤ lim

𝑛→∞
𝜑(𝑑𝑋(𝑥𝑛, 𝑦𝑛)) = 𝜑(𝑑�̂�(𝑥, 𝑦)).

The map ̂𝑓 is unique since it is continuous and has to equal 𝑓 ∘ 𝜄−1 on 𝜄(𝑋)
which is dense.

To show that the universal property characterises the completions of𝑋, sup-
pose that (�̂�1, 𝜄1) and (�̂�2, 𝜄2) are two completions of 𝑋. Then applying the
universal property to the maps 𝜄2 and 𝜄1 we get two maps 𝑆1 ∶ �̂�1 → �̂�2 and
𝑆2 ∶ �̂�2 → �̂�1 respectively with 𝜄2 = 𝑆1 ∘ 𝜄1 and 𝜄1 = 𝑆2 ∘ 𝜄2. But this shows that
𝜄1 = 𝑆2 ∘ 𝑆1 ∘ 𝜄1 so that 𝑆2 ∘ 𝑆1 is identity on 𝜄1(𝑋) and by uniqueness has to be
identity onwhole �̂�1. Similarly 𝑆1 ∘𝑆2 is the identitymap on �̂�2. Thus 𝑆1 is a bi-
jection with 𝑆−11 = 𝑆2. Moreover 𝑑�̂�2 (𝑆1(𝜄1(𝑥)), 𝑆1(𝜄1(𝑦))) = 𝑑�̂�2 (𝜄2(𝑥), 𝜄2(𝑦)) =
𝑑𝑋(𝑥, 𝑦) = 𝑑�̂�1 (𝜄1(𝑥), 𝜄1(𝑦)) for all 𝑥, 𝑦 ∈ 𝑋 so 𝑆1 is an isometry when re-
stricted to 𝜄1(𝑋), but then by continuity and density of 𝜄1(𝑋) in �̂�1 it has to be
an isometry on whole �̂�1. Hence �̂�1 is isometrically isomorphic to �̂�2 which
finishes the proof.

101



Normed spaces and completions

In this appendix we have gathered a small amount of basic facts about normed
vector spaces.

Definition B.1. Let 𝑋 be a (real) vector space and ‖ ⋅ ‖ ∶ 𝑋 → [0,∞) a norm.
Then the pair (𝑋, ‖ ⋅ ‖) is called a normed space. ◆

If 𝑋 is a normed space, then 𝑑(𝑥, 𝑦) ≔ ‖𝑥 − 𝑦‖ defines a metric on 𝑋. We
endow𝑋with the topology induced by 𝑑, this topology is also called the norm
topology or strong topology on𝑋.

Definition B.2. A complete normed space is called a Banach space. ◆
The natural maps to study in this setting are the continuous linear maps. A

basic result is that continuity is equivalent to boundedness.

Proposition B.3. Let (𝑋, ‖ ⋅ ‖𝑋) and (𝑌, ‖ ⋅ ‖𝑌) be normed spaces and 𝑇∶ 𝑋 → 𝑌
a linear map. Then 𝑇 is continuous if and only if it is bounded, meaning that
there exists a constant 𝐶 > 0 such that

‖𝑇𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋

for all 𝑥 ∈ 𝑋.

Proof. If ‖𝑇𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋 for all 𝑥 ∈ 𝑋, then we have

‖𝑇𝑥 − 𝑇𝑦‖𝑌 = ‖𝑇(𝑥 − 𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖𝑋

and 𝑇 is Lipschitz and hence continuous.
Conversely assume that 𝑇 is continuous and that there exists a sequence
(𝑥𝑛)∞𝑛=1 of nonzero elements of 𝑋 such that ‖𝑇𝑥𝑛‖𝑌/‖𝑥𝑛‖𝑋 → ∞. By picking
a subsequence we may actually assume that ‖𝑇𝑥𝑛‖𝑌/‖𝑥𝑛‖𝑋 ≥ 𝑛. Let us define
𝑦𝑛 =

𝑥𝑛
𝑛‖𝑥𝑛‖𝑋

. Then we have ‖𝑦𝑛‖𝑋 = 1/𝑛 and ‖𝑇𝑦𝑛‖𝑌 ≥ 1, but this contradicts
the continuity of 𝑇 since now 𝑦𝑛 → 0 and hence also 𝑇𝑦𝑛 → 0.

The smallest constant 𝐶 for which the inequality ‖𝑇𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋 holds is
called the norm of 𝑇 and denoted by ‖𝑇‖.

It is also helpful to note that linearity actually boosts the continuity to uni-
form continuity.

Lemma B.4. A continuous linear map 𝑇∶ 𝑋 → 𝑌 between two normed spaces
is uniformly continuous.
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B. Normed spaces and completions

Proof. For any 𝑥, 𝑦 ∈ 𝑋 we have ‖𝑇𝑥 − 𝑇𝑦‖𝑌 = ‖𝑇(𝑥 − 𝑦)‖𝑌 ≤ ‖𝑇‖‖𝑥 − 𝑦‖𝑋 so
𝑇 has a global modulus of continuity 𝜑(𝑠) = ‖𝑇‖𝑠 (𝑠 ≥ 0).

Particularly important maps are the ones that preserve distances.

Definition B.5. A linear map 𝑇∶ 𝑋 → 𝑌 between two normed spaces is an
isometry if ‖𝑇𝑥‖𝑌 = ‖𝑥‖𝑋 for all 𝑥 ∈ 𝑋. ◆

Clearly an isometry is automatically an injection and hence a linear embed-
ding of𝑋 into𝑌. The isometric property ensures that also the norm structures
in𝑋 and 𝑇(𝑋) agree, and hence 𝑇(𝑋) can be viewed as an isomorphic copy of
the normed space𝑋 sitting inside 𝑌.

Let us finally discuss completions of normed spaces.

Definition B.6. Let (𝑋, ‖ ⋅ ‖𝑋) be a normed space. Any pair (�̄�, 𝑇) where �̄� is
a Banach space and 𝑇∶ 𝑋 → �̄� is a linear isometry such that 𝑇(𝑋) is dense in
�̄� is called a completion of𝑋. ◆

Given a completion �̄� of 𝑋 we usually view 𝑋 as a subset of �̄�, in a similar
manner as we view the rational numbers as a subset of the real numbers, even
if the particular construction we used for the real numbers might actually not
possess such an inclusion relation in a purely set theoretic sense.

The main theorem of this appendix is that completions exist. Before that, let
us note that as in the case of metric spaces there is a nice way to characterise
completions:

PropositionB.7. Acompletion (�̂�, 𝜄) of a normed space𝑋 satisfies and is charac-
terised up to an isomorphism by the following universal property: If 𝑌 is any Ba-
nach space and 𝐴∶ 𝑋 → 𝑌 is a continuous linear map, then 𝐴 extends uniquely
to a continuous linearmap �̂� ∶ �̂� → 𝑌 such that𝐴 = �̂�∘𝑇. Moreover, the norms
of 𝐴 and �̂� are equal.

Proof. Mimic the proof of Proposition A.12.

We will end this appendix with a proof of the existence of completions.

Theorem B.8. Any normed space𝑋 has a completion.
Before the proof let us recall a bit of functional analysis.

Definition B.9. Let 𝑋 be a normed space. The (continuous) dual space of 𝑋
is the space

𝑋∗ ≔ {𝜑∶ 𝑋 → ℝ ∶ 𝜑 is linear and continuous}

endowed with the norm

‖𝜑‖𝑋∗ = sup
𝑥∈𝑋,‖𝑥‖≤1

|𝜑(𝑥)|. ◆
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B. Normed spaces and completions

The norm in 𝑋∗ is the same as defined above for continuous linear maps
𝑇∶ 𝑋 → 𝑌 in the special case where 𝑌 = ℝ. It is simple to check that it indeed
defines a norm on𝑋∗.

We note that duals are always complete.

Proposition B.10. Let𝑋 be a normed space. Then𝑋∗ is a Banach space.

Proof. Suppose that (𝜑𝑛)∞𝑛=1 is a Cauchy sequence in 𝑋∗. Then for any fixed
𝑥 ∈ 𝑋 the sequence 𝜑𝑛(𝑥) is also Cauchy in ℝ and converges to some limit
which we denote 𝜑(𝑥). It is easy to check that the map 𝜑∶ 𝑋 → ℝ is linear and
satisfies |𝜑(𝑥)| ≤ sup𝑛≥1 ‖𝜑𝑛‖𝑋∗‖𝑥‖𝑋 for any 𝑥 ∈ 𝑋, so that 𝜑 ∈ 𝑋∗. Finally
let 𝜀 > 0 and 𝑥 ∈ 𝑋 with ‖𝑥‖ ≤ 1 be arbitrary and choose 𝑛 ≥ 1 so large that
‖𝜑𝑛 − 𝜑𝑚‖ < 𝜀 for all𝑚 ≥ 𝑛. (Note that 𝑛 does not depend on 𝑥.) Then

|𝜑𝑛(𝑥) − 𝜑(𝑥)| ≤ lim sup
𝑚→∞
(‖𝜑𝑛 − 𝜑𝑚‖ + |𝜑𝑚(𝑥) − 𝜑(𝑥)|) < 𝜀

and as 𝑥 was arbitrary we see that ‖𝜑𝑛 − 𝜑‖ < 𝜀. Since also 𝜀 was arbitrary we
have 𝜑𝑛 → 𝜑 in𝑋∗.

The final ingredient we will need for the proof of Theorem B.8 is the Hahn–
Banach theorem.

TheoremB.11 (Hahn–Banach). Let𝑋 be a normed space and𝐸 ⊂ 𝑋 be a vector
subspace. Suppose that 𝑓∶ 𝐸 → ℝ is a continuous linear map (w.r.t. the norm
on 𝑋). Then there exists a continuous linear map 𝐹∶ 𝑋 → ℝ with 𝐹(𝑥) = 𝑓(𝑥)
for all 𝑥 ∈ 𝐸.

We will skip the proof. In fact Hahn–Banach is only needed if one wants
to prove the general version of Theorem B.8. When we actually use it in Sec-
tion 2.4, it is only in the case where 𝑋 is the set of simple random variables
under the 𝐿1-norm. We will indicate after the proof below how to handle this
special case without using Hahn–Banach.

Proof of Theorem B.8. Let𝑋∗ be the dual of𝑋 and𝑋∗∗ be the dual of𝑋∗ (also
known as the bidual of 𝑋). Let us define the map 𝜄 ∶ 𝑋 → 𝑋∗∗ by mapping 𝑥
to the map 𝑢𝑥 ∶ 𝑋∗ → ℝ given by 𝑢𝑥(𝜑) ≔ 𝜑(𝑥) for all 𝜑 ∈ 𝑋∗. The map 𝜄 is
linear since for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎, 𝑏 ∈ ℝ we have 𝑢𝑎𝑥+𝑏𝑦(𝜑) = 𝜑(𝑎𝑥 + 𝑏𝑦) =
𝑎𝜑(𝑥) + 𝑏𝜑(𝑦) = 𝑎𝑢𝑥(𝜑) + 𝑏𝑢𝑦(𝜑) for all 𝜑 ∈ 𝑋∗ so that 𝜄(𝑎𝑥 + 𝑏𝑦) = 𝑢𝑎𝑥+𝑏𝑦 =
𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑎𝜄(𝑥) + 𝑏𝜄(𝑦).

Next we claim that 𝜄 is an isometry. Note first that we have the upper bound

‖𝜄(𝑥)‖𝑋∗∗ = ‖𝑢𝑥‖𝑋∗∗ = sup
𝜑∈𝑋∗,‖𝜑‖𝑋∗≤1

|𝑢𝑥(𝜑)| ≤ ‖𝑥‖𝑋.

It remains to show that there exists some 𝜑 with ‖𝜑‖ ≤ 1 such that |𝑢𝑥(𝜑)| =
|𝜑(𝑥)| = ‖𝑥‖𝑋. This is where Hahn–Banach will enter: We will simply extend
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the linear functional 𝜑0(𝑡𝑥) = 𝑡‖𝑥‖𝑋 defined on the subspace {𝑡𝑥 ∶ 𝑡 ∈ ℝ} ⊂ 𝑋
to a continuous linear functional 𝜑 on whole 𝑋 so that it becomes an element
of𝑋∗.

Finally we define �̂� as the closure of 𝜄(𝑋) in 𝑋∗∗. As 𝑋∗∗ is complete by
Proposition B.10, also �̂� as a closed subspace is complete and by definition
𝜄(𝑋) is dense in �̂�.

In the special case where 𝑋 = 𝑆 is the space of simple random variables
with the 𝐿1-norm, we can avoid the use of Hahn–Banach as follows: Note that
any 𝑦 ∈ 𝑆 gives an element 𝜑𝑦 in the dual of 𝑆 by setting 𝜑𝑦(𝑥) = 𝔼[𝑦𝑥]
for all 𝑥 ∈ 𝑆. Indeed, this map is clearly linear and it is continuous since
|𝔼[𝑦𝑥]| ≤ ‖𝑦‖𝐿∞‖𝑥‖𝐿1 . Thus in particular if we choose 𝑦 = sgn(𝑥) we get
𝜑𝑦(𝑥) = 𝔼[sgn(𝑥)𝑥] = 𝔼[|𝑥|] = ‖𝑥‖𝐿1 , showing that 𝑢𝑥(𝜑𝑦) = ‖𝑥‖𝑋 as was
needed in the proof.
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Radon–Nikodym theorem

In this appendix we will provide a proof of the Radon–Nikodym theorem. It
is mainly based on [7].

Theorem C.1. Let (𝑇,G, 𝜇) be a probability space and assume that 𝜈 is another
measure on𝑇 such that 𝜈 ≪ 𝜇. Then there exists a measurable function𝑓∶ 𝑇 →
[0,∞] such that

𝜈(𝐴) = ∫
𝐴
𝑓𝑑𝜇

for all 𝐴 ∈ G.

Remark. For simplicity we will prove this theorem in the case where 𝜈 is also
a probability measure. It is easy to show that the theorem is true when 𝜇 and
𝜈 are both 𝜎-finite measures, and with some extra work one can get rid of this
assumption for 𝜈. ◆

Let us start with the following lemma.

Lemma C.2. Let A ⊂ G be a collection such that

• If 𝜇(𝐴) = 0, then 𝐴 ∈ A.

• If 𝜇(𝐴) > 0, then there exists 𝐵 ⊂ 𝐴 with 𝜇(𝐵) > 0 and 𝐵 ∈ A.

• A is closed under countable disjoint unions.

Then A = G.

Proof. Let us fix 𝐸 ∈ G and try to show that 𝐸 ∈ A. Consider all collections
(𝐴𝑖)𝑖∈𝐼 of disjoint sets 𝐴𝑖 ⊂ 𝐸 with 𝜇(𝐴𝑖) > 0 and 𝐴𝑖 ∈ A. We can order such
collections by inclusion, and by Zorn’s lemma there exists a collection (𝐸𝑖)𝑖∈𝐼
which is maximal. Now the index set has to be countable since 𝜇(𝐸𝑖) > 0 for
all 𝑖 ∈ 𝐼 and 𝐸 has a finite measure. Thus �̃� ≔ ⨄𝑖∈𝐼 𝐸𝑖 belongs to A. We
cannot have 𝜇(𝐸 ⧵ �̃�) > 0 since otherwise by assumption there would be some
𝐸′ ⊂ 𝐸 ⧵ �̃� which we could add to the collection (𝐸𝑖)𝑖∈𝐼, contradicting the
maximality. Since 𝐸 ⧵ �̃� has 0measure, also 𝐸 = �̃� ∪ (𝐸 ⧵ �̃�) belongs toA.

Proof of Theorem C.1. As indicated in the remark above, we will assume that
𝜈 is also a probability measure. Consider the following set of functions:

𝐻 ≔ {𝑓∶ 𝑇 → [0,∞] ∶ 𝑓measurable, ∫
𝐸
𝑓𝑑𝜇 ≤ 𝜈(𝐸) for all 𝐸 ∈ G}.
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The idea is roughly to take the largest of all functions in𝐻. One cannot simply
take the pointwise supremum, though, since this could easily be the constant
function∞ if all the singletons of 𝑇 have zero measure. We will thus go in a
bit roundabout way and define instead the maximal total mass

𝑀 ≔ sup{∫
𝑇
𝑓𝑑𝜇 ∶ 𝑓 ∈ 𝐻} ≤ 𝜈(𝑇) = 1.

Note that if 𝑓, 𝑔 ∈ 𝐻, then also 𝑓 ∨ 𝑔 ∈ 𝐻, since

∫
𝐸
(𝑓 ∨ 𝑔) 𝑑𝜇 = ∫

𝐸∩{𝑓≥𝑔}
𝑓𝑑𝜇 + ∫

𝐸∩{𝑓<𝑔}
𝑔𝑑𝜇

≤ 𝜈(𝐸 ∩ {𝑓 ≥ 𝑔}) + 𝜈(𝐸 ∩ {𝑓 < 𝑔}) = 𝜈(𝐸).

Thus there exists a pointwise increasing sequence𝑓𝑛 ∈ 𝐻 such that ∫
𝑇
𝑓𝑛 𝑑𝜇 →

𝑀. Let us now define 𝑓 ≔ sup𝑛 𝑓𝑛 and claim that 𝑓 is a Radon–Nikodym
derivative of 𝜈 with respect to 𝜇.

By the monotone convergence theorem it is clear that 𝑓 satisfies ∫
𝐸
𝑓𝑑𝜇 ≤

𝜈(𝐸), so it is enough to show the opposite inequality. Assume in contrary that
there exists a set 𝐸 and 𝜀 > 0 such that ∫

𝐸
𝑓𝑑𝜇 < 𝜈(𝐸) − 2𝜀. We claim that

inside 𝐸 there exists a subset 𝐹 ⊂ 𝐸 with 𝜇(𝐹) > 0 and such that 𝑓 + 𝜀𝟙𝐹 ∈ 𝐻.
If not, then for all 𝐹 ⊂ 𝐸 of positive 𝜇-measure there exists a set 𝐺 such that
∫
𝐺
(𝑓 + 𝜀𝟙𝐹) 𝑑𝜇 ≥ 𝜈(𝐺). We see then from

𝜈(𝐺∩𝐹)+𝜈(𝐺 ⧵𝐹) = 𝜈(𝐺) ≤ ∫
𝐺
(𝑓+ 𝜀𝟙𝐹) 𝑑𝜇 ≤ ∫

𝐺∩𝐹
(𝑓+ 𝜀𝟙𝐺∩𝐹) 𝑑𝜇+𝜈(𝐺 ⧵𝐹)

that also the set �̃� = 𝐺 ∩ 𝐹 ⊂ 𝐹 satisfies that ∫
�̃�
(𝑓 + 𝜀𝟙�̃�) ≥ 𝜈(�̃�). Hence the

collection
A = {𝐺 ⊂ 𝐸 ∶ ∫

𝐺
(𝑓 + 𝜀𝟙𝐺) 𝑑𝜇 ≥ 𝜈(𝐺)}

satisfies the second bullet in Lemma C.2. It is also clear that A contains the
sets of measure 0 inside 𝐸 and is closed under countable unions. Thus in fact
A contains all the measurable subsets of 𝐸, including 𝐸 itself, but this is a con-
tradiction since then

∫
𝐸
𝑓𝑑𝜇 + 𝜀 ≥ ∫

𝐸
(𝑓 + 𝜀𝟙𝐸) 𝑑𝜇 ≥ 𝜈(𝐸) ≥ ∫

𝐸
𝑓𝑑𝜇 + 2𝜀.

Thus there must exist a set 𝐹 ⊂ 𝐸with 𝜇(𝐹) > 0 and 𝑓+𝜀𝟙𝐹 ∈ 𝐻, but this now
contradicts the fact that ∫𝑓𝑑𝜇 = 𝑀 is the supremum of total masses over𝐻,
since ∫(𝑓 + 𝜀𝟙𝐹) 𝑑𝜇 ≥ 𝑀 + 𝜀𝜇(𝐹).
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