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Notation

Set theory

x€eA
AUB
ANB
A\B
AAB
P(A)
(xn)nN:I
()21
(%)
(Xi)ier
Uiel Ai
ﬂiel Ai

x is an element of the set A

union of two sets

intersection of two sets

difference of two sets

symmetric difference: AAB = (A\B)U(B\ A)
power set of A (the set of all subsets of A)
finite sequence xy, x5, ..., Xy

infinite sequence xy, x5, ...

countable (finite or infinite) family
family indexed by an arbitrary index set I
union of a family of sets

intersection of a family of sets

.., A; union of disjoint sets
Im(f) the image f(A) of a function f: A — B
|A] number of elements in the set A
Specific sets
N natural numbers 1,2, ...
Z integers
R real numbers
R extended real numbers R U {—00, 0o}
C complex numbers x + iy
R4 d-dimensional Euclidean space

Measure theory

TG, ...

o-algebras denoted by fancy letters

Definition 1.1




B Borel o-algebra of some topological space Definition 1.6
o(A) o-algebra generated by a family of subsets Definition 1.4
U, v measures Definition 1.8
1,(x) indicator function: 1 if x € A, 0 otherwise

Probability theory
Q sample space Definition 1.9
w outcome, w € Definition 1.9
P probability measure Definition 1.9
o(X) o-algebra generated by the random variable X [Definition 1.22
limsup, A, the event that infinitely many of A, happen  [Definition 2.1
liminf, A, the event that ultimately all of A,, happen Definition 2.1

Various notation

anb minimum of a and b

avb

maximum of a and b




Introduction

Probability as an intuitive notion is probably very old. Like in that very first
sentence, we run into situations where chance has to be estimated all the time —
whether it was our gatherer ancestors guessing where to find food, or a modern
judge weighing evidence in a court of justice; Games of chance are older than
the written history [J9].

Finding systematic ways to reason about probabilities on the other hand
does not seem to be so old. Gambling was a driving force in early mathe-
matical investigations into probability, starting with Cardano in 16th century
who in his study of dice games defined odds as the ratio of favorable outcomes
to unfavorable ones, and continuing with Pascal and Fermat in 17th century
whose work among other things lead to the notion of expected value.

In modern mathematical language we could try to axiomatize some kind of
early versions of probability theory suitable for e.g. dice games by postulating
the following:

o There is a nonempty finite set 2 of possible outcomes.
 Each outcome w € Q has a probability p,, € [0, 1].

« Wehave} _,p,=1

One can then proceed by defining other probabilistic concepts such as events,
random variables, expectations and independence.

Example. Let Q == {H,T} x {1,2,3,4,5,6} and p, = 1/12 forall w € Q. We
can view each pair (¢t,d) € Q as a simultaneous toss of a fair coin and a 6-sided
die.

o A random variable is a function X : Q — R. For instance X(t,d) = d
gives us the value of the die toss, Y (t,d) = 1 (H} (t) is 1 if the coin toss was
heads and 0 otherwise, and Z(t,d) = 2d — 317,(¢) would be a random
variable which is 2 times the die toss, minus 3 if the coin toss was tails.

o Events are subsets of (, for instance the event {H} x {1, 3, 5} corresponds
to tossing a heads and an odd number. The same event could also be
defined by using the random variables as X' ({1, 3, 5})nY ! ({1}), which
we often write as {X € {1,3,5}} n{Y = 1}.

« The probability of an event E is denoted by P[E] == } . P,,-
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 The random variables X and Y are independent, meaning that
P[X € A,Y € B] = P[X € A]P[Y € B]

for all A,B ¢ R. This is also reflected in the product structure of the
space Q: Each option for the coin toss has the same options and proba-
bilities for the die throw. .

o The expected value of a random variable X is the weighted sum

E[X] = ) X(@)p,,

weN

which for our particular X equals %(1 +24--+6)= %

The above framework works nicely as long as the sample space (2 is finite
(or countable), but modern applications of probability have come a long way
from the simple - or often not so simple! — combinatorics of die throws and
card games. Indeed, the view that everything is captured by the probabilities
of the individual outcomes w € Q starts to fall apart when the number of pos-
sible outcomes becomes uncountable, such as when trying to choose a random
number from the interval [0, 1].

Exercise. Show that one cannot assign probabilities p, > 0 for all x € [0, 1]
in such a way that )’ | Px = 1. Here we interpret the sumas Yo Px =

*

x€[0,1
SupSC[O,l],S is finite ZxES Px-

The usual axiomatization of probability theory by Kolmogorov therefore lets
go of the idea that the probabilities of individual w € Q determine the proba-
bilities of events, and instead directly defines probabilities on the events. This
allows us to say for instance that the probability of a uniformly distributed ran-
dom number on [0, 1] has probability 1/3 to lie in the interval [1/3,2/3], even
though the probability of hitting any single fixed x € [0, 1] is 0. This point of
view will naturally lead us to measure theory, which will present some techni-
cal challenges but also in the end gives a richer framework to work in[']

As a result we will see that the underlying probability space Q2 largely loses
its importance: There are typically infinitely many different ways to choose a
set (2, a bunch of events on it and probabilities for those events, but in the end
the only thing we care about it is that 0 is large enough so that it can be used
to define the specific events and random variables we want to model in our
applications. Thus Q could intuitively be thought of as an abstract set which

! Although the measure theoretic foundation of probability has become the standard, mathe-
matics is flexible and one can wonder about alternative approaches to modeling probabil-
ity. A curious reader can for instance take a look at 5] for a nice story using nonstandard
analysis.
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contains the whole future of the universe behind a single w, and our events and
random variables could be just a tiny part of the total randomness included!
Yet, it will require from us a considerable amount of measure theoretic work
to see that such powerful Qs do exist within set theory.

After setting up the foundations, we will state and rigorously prove some of
the main theorems of basic probability such as the law of large numbers and
the central limit theorem. Considerable focus will also be given to different
modes of convergence of random variables and associated function spaces of
random variables.



Foundations

1.1 o-algebras

We will start by defining o-algebras, which will later on be used to model prob-
abilistic events.

Definition 1.1. Let T be any set. A o-algebra on T is a nonempty collection
G of subsets of T that is closed under complementation and taking countable
unions. .

« Note that it follows from the definition that if G is a o-algebra on T, then
&,T € G,andif A}, A,),--- € Gthen )2 A, €G.

The pair (T, G) is called a measurable space and the elements of G are called
measurable subsets. One often says just “measurable subsets of T” if the o-
algebra G is clear from the context. Any set has at least one o-algebra on it, as
is seen in the following example.

Example 1.2. The set {J, T} is a o-algebra on T It is the smallest o-algebra on
T and we call it the trivial o-algebra. There is also a unique largest o-algebra
on T, the power set P (T). .

Lemma 1.3. Let (G,),¢; be a collection of o-algebras on T indexed by an arbitrary
index set I. Then G = (\,.; G, is a o-algebra.

i€l
Proof. As @ € G, foralli € I, we see that & € G so G is nonempty.

IfA e GthenA € G, foralli € I. ThusT \ A € G, foralli € I and we see
that T\ A € G.

Finally if (A,,) is a countable family of sets in G, it is also a countable family
of sets in each G, and thus its union belongs to each G, and hencealsoto G. [

Definition 1.4. Let (A;),; be a collection of subsets of T' indexed by an arbi-
trary index set I. Then the o-algebra generated by (4,);.; is given by

o((A))er) = ﬂ{(j € P(P(T)) : Gisao-algebraon T and {A;};c; C G}.

Exercise 1.5 (0-algebras on finite sets). Assume that T is finite and G is a o-
algebra on T. Show that there exists a unique way to partition T into disjoint
sets Aj,..., A, € G such that every set in G can be expressed as the union of
some A; ..., A, 1 <ip,...,ip <n.
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Conversely, show thatif A, ..., A, is a partition of T into disjoint sets, then
the collection of all different unions A; U -+ U A; forms a o-algebra. .

A very common situation is when the o-algebra is generated by a topology.
Definition 1.6. Let T be a topological space. The Borel o-algebra B on T is
the o-algebra generated by the open sets of T'. .

It is often easy to find nicer generating collections for the Borel o-algebra
than arbitrary open sets. In particular for the real line we have the following
useful lemma.

Lemma 1.7. The Borel 0-algebra on R is generated by any of the following col-
lections of sets:

o Open intervals (a,b) with a,b € Q.
o Closed intervals [a,b] with a,b € Q.
o Intervals of the form (—co,t) witht € Q.

o Intervals of the form (—co, t] witht € Q.
Proof. Exercise. ]

1.2 Measures

Having defined o-algebras we next turn our attention to measures, which are
a way to assign a size to sets in a o-algebra in a consistent way.

Definition 1.8. A measure y on a measurable space (T, G) is a countably ad-
ditive map y: G — [0, co]. .

» Countable additivity means that for any countable (finite or infinite)
family (A,)) of disjoint sets in G we have u(J, A,) = Y, u(A,).

« By applying this to the empty family we see that u(&) = 0[]

Given a set T, a o-algebra G and a measure y, we call the triple (T, G, u) a
measure space. A central object for us will be a special measure space called
the probability space.

Definition 1.9. Let Qbeaset, Fac-algebraonQandP: F — [0, 1] ameasure
such that P[Q] = 1. We call the triple (Q, F, IP) a probability space, the set 2
the sample space and the measure IP a probability measure. The elements of
Q are called outcomes and the elements of F are events. For any event A € F
we call P[A] the probability of A. .

'Often in the literature countable additivity is defined so that additivity holds for any infi-
nite sequence A, A,, ... but not a priori for finite families. In this case one needs to also
explicitly assume that (&) = 0.

10



1. Foundations

From now on the symbols 2, F and IP will always refer to the sample space,
the o-algebra of events and the probability measure of some probability space
(Q, F,P).

Example 1.10. Here are a couple of simple examples of measure spaces.

o Let T be any set and define the counting measure y on the o-algebra
P (T) by setting
|A|, if Ais finite

A) =
uA) {oo, otherwise
forall AcT.

o IfT is finite and nonempty, we may define the uniform probability mea-
sure v on T by letting v := u/|T]|.

o+ Assume that T is nonempty and fix x € T. The Dirac delta measure 4,
at x is defined by setting y,.(A) := 1,(x) forall A c T.

« Assume that Q is countable and for every w € Q we have assigned a
probability p, € [0,1] in such a way that ' _, p, = 1. Then P[A] =
> wea Po is a probability measure on the o-algebra F = P (Q). .

Another central example is the Lebesgue measure, whose existence we will
show later on.

Example 1.11. There is a unique measure A defined on the Borel o-algebra of
R that satisfies

o For any rectangle R = [a,,b,] x -+ X [a,,, b,] we have
AR) = [ (b - ).
k=1

The measure A is called the Lebesgue measure on R, .

Let us list some basic properties of probability measures.

Lemma 1.12. Let (Q, F, P) be a probability space.
« IfA,B€ Fand A C B, then P[A] < P[B].
« If(A,);2, is a sequence of events, then P[( 72| A,] < )2 P[A,].
« IfA) CAy,CAyC... then P[J72, A, ] =lim, , P[A,]
« IfA| DA, D A;D ... then P[22 A,] =lim, , P[A,]

Proof. Exercise. O

11



1. Foundations

Remark. The above lemma holds also for general measures, provided that in
the last item we assume that one of A, has finite measure — what can go wrong
otherwise? .

1.3 Random variables

Definition 1.13. Let (T}, F,) and (T}, F,) be two measurable spaces.

« Amap f: T, — T, is called measurable (w.r.t. the o-algebras F, and
TF,) if for all A € F, we have f'(A) € F,.

o If the domain 7] is a probability space, we call f a T,-valued random
variable.

o If furthermore (T,, F,) = (R, B) we drop “T,-valued” and simply say
that f is a random variable. .

Random variables are the meat and butter of probability theory since in the
end what really matters are the (joint) laws of the random variables we de-
fine. This means that although there are many ways to construct the under-
lying probability space (Q, F, P), it does not matter which particular way we
pick — we are happy to just know that a rich enough probability space exists on
which we can define our random variables. In the end we want to be able to
simply say something like

Let X and Y be two independent standard normal random vari-
ables and given X and Y let Z be an Poisson random variable with
mean X2 + Y2,

and know that one can construct 2, F and IP which are able to host the random
variables X, Y and Z. We are not yet there, however.

The following proposition is often useful when checking that a function is
measurable.

Proposition 1.14. Let (T}, F,) and (T,, F,) be two measurable spaces and let
f: T, — T, be a function. Assume that F, is generated by some sets (A;);cs-
Then f is measurable if and only if f~1(A;) € T, foralli € L.

Proof. Clearly if f is measurable then the condition holds.

The proof of the opposite direction uses a strategy that is very useful in many
theorems regarding o-algebras, and the reader is advised to memorize it: To
show that some proposition P(A) holds for all sets A in a o-algebra F generated
by sets (A;);c;> it is enough to show that:

o Theset {A € F : P(A)} is itself a o-algebra.

12
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o P(A,;)is true foralli € I.

In the present case P(A) is the proposition “f~!(A) is measurable”. Let us
thus define
G={AeT,: f (A e T}

By assumption we have f ' (A;) € F, foralli € I. To show that Gisa o-algebra
we check the following:

« G is closed under complementation: Given B € G we have f™'(B°) =
(f_l(B))C € F,,s0 B € G.

« Gis closed under countable unions: If (B,,),, is a countable collection of
setsin G, then f~'(U, B,) =, f7'(B,) € Fy,soJ, B, €G. O

Combining the above proposition with[Lemma 1.7|one sees that to check the
measurability of a function f: T — R it is enough to for example check the
measurability of f~!((~00,t)) forall ¢ € R (or Q). This is useful for instance
in the proof of the following elementary facts.

Proposition 1.15. We have the following basic facts on combining random vari-
ables.

o Assume that X is a random variable and f : R — R is Borel measurable,
then f o X is a random variable.

o Assume that X and Y are random variables, then also X +Y, X =Y and
XY are random variables.

o Assume that X and Y are random variables and Y (w) # 0 for all w € Q.
Then XY is a random variable.

Proof. Exercise. Hint: One can express the set {X + Y < t} as the countable
union
X+v<th=JUX <upn{y <t-u}). m
ueQ

In addition to sums and products, one often wants to look at the measur-
ability of various limits of random variables. To this end it will be helpful to
define the extended reals.

Definition 1.16. We denote by R the extended real numbers R U {—c0, 0o}
and endow it with the topology generated by the open intervals in R together
with the intervals [-00, x) and (x,00] for x € R. The set R with its Borel
o-algebra becomes a measurable space. .

Exercise 1.17. Show that X is a R-valued random variable if and only if the
sets X1 ({+oo0}) and X !(A) are measurable for all Borel A ¢ R. .

13



1. Foundations

Proposition 1.18. Assume that (X,,),2, is a sequence of random variables. Then

infX,, supX,, liminfX, and limsupX,
n n n—-oo 1n—00

are R-valued random variables. In particular pointwise limits of random vari-
ables are random variables if the limit exists at every point.

Proof. Exercise. O

The most important property of a random variable is its distribution, which
is a probability measure on the target space of the variable.

Definition 1.19. Let X be a T-valued random variable. The law (or distri-
bution) of X is the probability measure X,IP on T defined by X,P(A) :=

P(X1(A)F .

Example 1.20. Let Q = {H, T} x {1, ..., 6} with uniform probability measure
on the o-algebra P (), and define the random variables X(c,d) = 1 (H} (c)and

Y(c,d) = d. Then the law of X(c, d) equals %(60 + &) and the law of Y(c, d)

equals é 22:1 0. The random variables Z = 1 - X and W = @ have the
same law as X, but their relationships to X are different. For instance X+Z =1
is a constant random variable, while X + W takes value 0 with probability 1/4,
value 1 with probability 1/2 and value 2 with probability 1/4. Thus (X, Z) and
(X, W) have different joint laws, although their marginal laws are the same.

The most common way to define random variables is by giving their law.

Example 1.21. A standard normal random variable X is a random variable

whose law is given by

for any Borel set A ¢ R. The function x — = W Z is called the probability density
function of X with respect to the Lebesgue measure. .

1.4 Sub-o-algebras as encoders of information

Definition 1.22. Let X be a random variable. The o-algebra generated by X
is defined by
o(X) ={X1(A): A e B},

*In general if f is a map from a measure space (T}, G,, p) to a measurable space (T, G, ), one
can define on the latter space a measure v by setting v(A) = u(f ' (A)) forall A € G,. The
measure v is called the push-forward measure of y via the map f and also denoted by

A2

14



1. Foundations

where B is the Borel o-algebra on R. .

Exercise 1.23. Show that 0(X) is indeed a o-algebra. .

In the presence of a fixed outcome w € (, the o-algebra o(X) can be thought
of as consisting of all the available information about X: If we want to know

whether X lies in some particular Borel set A, we can check whether w €
X71(A).

Definition 1.24. Let X and Y be random variables. We say that Y is measur-
able w.r.t. X or X-measurable if 0(Y) ¢ o(X), or equivalently Y ! (A) € o(X)
forall A € B. .

The following theorem makes precise the idea that if Y is X-measurable,
then Y can be reconstructed from X.

Theorem 1.25. Assume that X and Y are random variables such that Y is X-
measurable. Then there exists a Borel-measurable function f : R — R such that
Y=foX.

The proof of this theorem will make use of the following approximation re-
sult which we will find useful also later on.

Definition 1.26. A random variable X is simple if it takes only finitely many
different values. -

Proposition 1.27. Let X be a random variable. Then there exists a sequence X,

of simple random variables such that lim,_, X,, = X.

Proof. Let

2

< k
Xp= ) e

k=—n2 1 "o

Then clearly for fixed w € Q we have for n > | X(w)| that

%) - K@)
n

which tends to X(w) as n — oo. O

Proof of[Theorem 1.25] Note that X and Y are random variables also in the re-

stricted probability space (€2, 0(X), IP). Thus by[Proposition 1.27|there exists a
sequence (Y,,);,2, of X-measurable simple functions such thatlim,_, Y, =Y.

Fix n > 1. Since Y,, is simple, it takes m different values a, ..., a,, in the
sets A,,..., A,, € o(Y,), respectively. As o(Y,) € o(X), we may write A; =
X'(By) for some Borel sets (B;)?,, and hence Y, = f, o X where f, is the

15



1. Foundations

Borel measurable function R — R defined by

fulx) =) alp (x).
k=1

By |Proposition 1.18| the function f = lim sup, . f, is a measurable func-

n

tion R — RR. We may define a function f: R — R by setting

0, if f(x) = 00
flx)=1 - f ) .
f(x), otherwise
Then f is measurableand Y = lim,,_, Y, =lim,_,, f, > X = f o X, since the
limit lim,,_,, f,(z) = f(2z) holds for all z € Im(X). [

Since there is no probability measure involved in the definition, the measur-
ability of one random variable with respect to another does not say much about
the distribution of these two variables. Now, the opposite of measurability of
X w.r.t. Y would in some sense be to be unable to say anything about X when
knowing Y, and interestingly the probability measure becomes important to
make a natural definition in this case.

As a first attempt — without defining probabilities — one could try for in-
stance to require that X(Y '{a}) does not depend on a € R, i.e. X always at
least has the same possibilities no mattery which value Y takes. This however
is not very natural for various reasons, the most important of which is that
probabilistically thinking we should not only require that the possible values
for X stay the same when conditioning on Y, but also that the probabilities do
not depend on Y. This is called independence.

More generally and precisely, two o-algebras F,, F, are independent if nei-
ther contains probabilistic information about the other, meaning that knowing
that A € F, happened does not affect the probability that B € F, happened,
i.e. P[B|A] = IP[B]. By the elementary definition of conditional probability we
would thus have P[A N B] = P[A]P[B], and this is what we will actually take
as the definition.

Definition 1.28. Let T, ..., F, be sub-o-algebras of F. We say that F, ..., F,
are independent if for all (A)), € []L, F; we have

]P[ ﬂAi] - ﬁ]P[Ai].

i=1 i=1

Moreover:

« An arbitrary collection (F;);.; of o-algebras is independent if any finite
subcollection of it consists of independent o-algebras.

16



1. Foundations

« Events (A;),.; are independent if 0({A;}) are independent.
« Random variables (X;);.; are independent if 0(X;) are independent.

The notion of independence is also tightly tied to products of probability
spaces which we will discuss later. The point of the next exercise is to illustrate
this idea in the case of at most countable number of outcomes.

Exercise 1.29. Let (X, )}_, be random variables with X defined on a prob-
ability space (Q, Fy, P,) where Q. is countable and F;, = P(Q). Define
Q= [];_; O, let F = P(Q) and define a function IP on P (Q2) by setting

Pl{(wy, ..., )} = P [{w}] ... P [{w,}]

for singletons (w,, ..., w,) and extending to arbitrary subsets by summation.
Show that IP defines a probability measure and that the random variables

X, : Q- Rgivenby X, ((w, ..., w,)) = X (w;) are independent and X, has

the same law as X;. .

1.5 Infinitely many coin tosses

So far the most complicated random variables we know how to construct are
the ones that take at most countably many different values. The purpose of
this section is to show how to construct random sequences (X,,);2,, where X,
are independent Bernoulli random variables. This will have a big impact on
our repertoire of random variables, as we will see that by using infinitely many
coin tosses we will be able to for instance construct random variables with
arbitrary laws on R. With new powers come new responsibilities, however,
and we will have to be a bit more careful as somewhat weird phenomena such
as nonmeasurable sets will appear as a by-product.

For the construction a natural starting point is to define Q = {0, 13N and
X, ((wr)32,) = w,,. The hard part is in defining the o-algebra F and the prob-
ability measure IP, since the latter cannot be defined on all subsets of (2 simul-
taneously as is illustrated by the following proposition.

Proposition 1.30. Let Q = {0,1}% and define the shift-operator T: Q — Q
which maps (W) ez — (Wi, 1)kez F| By symmetry it would be natural to require
that P is T-invariant and that P[{w}] = 0 for any single w € Q. However no
such P can be defined for all sets in P (Q) simultaneously.

Proof. Assume that such P exists. Let us say that w; and w, are equivalent
if v, = T"w, for some n € Z. By the axiom of choice we can construct a

3Note that it does not matter whether we index the sequences using IN or Z since both are
countable. The shift-operator is just easier to define using Z.

17



1. Foundations

set A which contains exactly one representative from each equivalence class.
We note that if o = T"w for some n € Z, then w must be of the periodic
form (..., w,,,w;,w,,...,w,,,w,, ...) and the length of the period m divides .
Since there are only countably many such periodic w’s, we may remove them
from A without changing the measure of A and obtain a set B. The sets T"B
(n € Z) are disjoint, there are countably many of them and their union con-
tains every nonperiodic w. Thus 1 = P[|J,., T"B] = }.,_, P[B], but this is a
contradiction since if IP[B] # 0, the sum is co. l

To overcome this problem our strategy will be to define IP step by step on
larger and larger collections of events, eventually ending up with a o-algebra
while all the time carefully ensuring that countable additivity is preserved. To
this end, let us begin by calling a set of the form

o0
A= H A,, A, =1{0,1} for all but finitely many n
n=1

a cylinder set and define
(o)
P[A] = [ [ P[A,]
n=1
for all cylinder sets, where P[A, ] := |A,|/2. Let
n
R = {U Ak . AL, ..., A" are disjoint cylinder sets}
k=1

denote the collection of all finite unions of disjoint cylinder sets. The family R
is a nice stepping stone towards a o-algebra since it forms an algebra.

Definition 1.31. Let T be some set and R ¢ P (T). We say that R is an algebra
if it is nonempty and closed under complementation and taking finite unions.
*

Exercise 1.32. Show that R is an algebra. Hint: It is probably easiest to do this
in steps, showing that:

« Intersection of two cylinder sets is a cylinder set.
« Complement of a cylinder set is in R.
 Deduce the result for arbitrary sets in R. .

We next define

P[A] = ) P[A¥]
k=1
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1. Foundations

for any A = |4}_, A¥ € R. Note that this is well-defined since for m large
enough so that A}‘ ={0,1} forall 1 < k < nand j > m, we may compute

n

n n oo Alg
Sru1= X157 = Y] 4= U T 4= 2 e
k=1 k=1 j=1

k=1 k=1 j=1

where 77, : {0, 1} — {0, 1}™ is the projection to the first 7 coordinates. The
right hand side is constant for m large enough, and hence if A = |4{_, Ak
is another representation of A as a union of cylinder sets, we indeed have
Do P[AF] = P IP[A¥]. From here it also easily follows that PP is finitely
additive on R, namely if A = [4_, AFand B = trozl B/ are two disjoint ele-
ments in R, then A U B can be represented as AU B = [4J]_, A" & &J;”:l B/ and
hence
n m
P[AUB] = ) P[A] + ) P[A] = P[A] + P[B].
k=1 j=1
Are we safe now? Remember that we want IP to be countably additive. One
thing that could potentially go wrong would be that even though P is finitely
additive on R, there would be some countable sequence (4,52, of disjoint
elements of R whose union is also in R but P[[¢.2, A, ] # > *°, A,. However
this is in fact not an issue in our case because of the following lemma.

Lemma 1.33. There does not exist any infinite sequence (A,,),2, of disjoint non-
empty elements of R such that their union is also in R.

Proof. Notice that if the union A = (42, A, is in R, then adding Q \ A to the
sequence would give us 2 as the union, so it is enough to prove the claim in
the case A = 2. Moreover, since any element of R is a finite union of cylinder
sets, we may without loss of generality assume that all A, are cylinder sets as
well.

Assume that such cylinder sets A” with [472, A" = Q exist. We will con-
struct an element w € Q such that w ¢ A" for any n, and this will give us
the contradiction. The construction proceeds by induction: We let w; = 0 if
there are infinitely many A" such that 0 € A", otherwise there are infinitely
A" for which 1 € A"l and we let w; = 1. Similarly, assuming that w,, ..., w,,
have been defined, we let w,,,,; = 0 if there are infinitely many A" such that
(w5 ..., w,,,0) € AT x -+ x Am .1> otherwise there are infinitely many A" for
which (w,...,w,,,1) € A’} -x A” ., and we set w,,,; = 1. But w so con-
structed cannot belong to any given A", since if m is so large that A7 = {0, 1}

for all j > m, then because the sets were disjoint, no other A" has any ele-
ments with starting coordinates (w;, ... ,w,,), which contradicts the construc-
tion where at every stage there were infinitely many such A" . ]
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1. Foundations

We have now reached the situation where we have defined IP as a countably
additive mapf¥|on the algebra generated by the cylinder sets. This is actually a
scenario where general measure theoretic results start to apply, so let us con-
tinue a bit more abstractly and assume that T is some set, R is some algebra of
subsets of T and y: R — [0, 0co] is a countably additive map with u(T) < co.

The next and final step is to extend y to the o-algebra generated by R. To
this end we will define the outer measure y* : P (T) — [0, 1] by setting

p*(A) = inf{ OZO: u(A,) : A, € Rforalln e N, A ¢ UAn}.
n=1 n

Lemma 1.34. The outer measure u* satisfies the following properties:
o u*(A) <ooforall Ae P(T).
o u(A) <u*(B)forall A,B € P(T) such that A C B.

o u* is countably subadditive on P (T), meaning that
w(JA) <) wi(A)
for any countable family (A,,),, of subsets of T
o u*(A) =u(A)forall AcR.

Proof. Exercise. O]

The main idea in extending the domain of y from R to a o-algebra consists
of extending the domain of y by setting u(A) := u* (A) whenever the set A can
be approximated by elements of R up to zero p*-measure. The key to make
this rigorous is to define the pseudometric d(A, B) = u*(AAB) on P (T) and
take the closure of R in this topology. We will next show in a series of claims
that R is actually a o-algebra and that u* is countably additive when restricted
to R.

Claim: d is indeed a pseudometric.
We leave this as an exercise.
Claim: p* is continuous in the pseudometric d.

We see that

p (A) —u*(B) < u*(ANB)+u*(A\B) - u*(B) < u*(A\ B) < u*(AAB),

4To be clear - in this context countable additivity means that if (A,)52, is a sequence of
disjoint sets in R and it also happens that [ J;°, A, is in R (which does not have to be the
case in general), then P[ 2, A,] = > 2, P[A,].
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1. Foundations

and exchanging the roles of A and B we have

lu*(A) - p* (B)| < d(A, B).

Thus p* is Lipschitz and in particular continuous.

Claim: The closure of R under the pseudometric d is a o-algebra.

Clearly @ € R, so R is nonempty.

If A € R, then there exists a sequence A, € R such that d(A,, A) — 0.
Since d(T'\ A,,T\ A) =d(A,, A), wesee thatalso T\ A, —» T\ A € R.

If A, B € R, then there exist sequences (A, )2, (B,)%, of elements of R
such that A, — A and B, — B. We have

d(A,UB,,AUB) =u"((A,UB,)A(AUB)) < u*((A,AA) U (B,AB))
<d(A,,A)+d(B,,B),

which tends to 0 asn — 00,0 A, UB, — AU B € R. By de Morgan’s

law and the previous bullet we also have A, N B, - AN B € R.

For A, B, A,, B, as above we also have

W (AUB) = lim u(4, UB,) = lim (u(A,) + u(B,) - u(4, N B,)
= u*(A) +u"(B) —pu* (AN B),
so in particular for disjoint A, B € R we have yu*(AUB) = u*(A)+u* (B).
Thus p* is finitely additive on R.

Finally if (A,)52, are disjoint elements of R, let B, == | J_, A (with the
convention By = &) and B = J2, A,. For any n > 0 we have

wBAB) =p (| Apzuw (| A=) w4
k=n+1 k=n+1 k=n+1
for allm > n + 1. Thus by letting m — oo we get
u (BAB,) > Y u*(Ay)
k=n+1

and by subadditivity the inequality is actually an equality. Since u*(B)
is finite, we see that } >, u*(Ay) < co, and thus

(o]
lim p*(BAB,) = lim ) u*(A,)=0.

k=n+1
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1. Foundations
Hence B, — B € R, which finishes the proof that R is a o-algebra.

Claim: p* is a measure when restricted to R.

Let (A;)f2, be a sequence of disjoint elements of R. We saw above that
lim, Ui, Ax = Up2; Ak and hence by the continuity and finite additiv-
ity of u* we have

(o] n n (e0]
p({ A = lim (A = lim Y u*(A)) = ) (4.
k=1 R M| ey k=1

Since o(R) C R, we have proven the following general extension result, apart
from the claim on uniqueness.

Theorem 1.35 (Carathéodory’s extension theorem). Let R be an algebra on T
on which a countably additive map yu: R — [0, 1] has been defined with u(T') =
1. Then u extends uniquely to a probability measure on o(R).

The uniqueness will follow from a general result that states that probability

measures that agree on a 77-system P also agree on the o-algebra generated by
p.

Definition 1.36. Let P bea collection of subsets of aset T. Then P is a 7m-system
if A, B € P implies that AN B € P. .

Definition 1.37. Let D be a collection of subsets of a set T. Then D is a A-
system (or Dynkin-system) if

s JeD,
o it A e D, then A° € D, and
« if (A,) is a countable family of disjoint elements of D, then | J, A, € D.

*
These definitions can be thought of as splitting the conditions of a o-algebra
into two separate parts.

Lemma 1.38. Assume that G is a collection of subsets of a set T that is both a
nt-system and a A-system. Then G is a o-algebra.

Proof. Exercise. O

What makes the separation of conditions useful is that typically checking
that something is a 77-system is easy, and for A-systems the fact that you only
need to check the countable union condition for disjoint sets typically plays
well together with the countable additive condition of measures.
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1. Foundations

Just as with o-algebras, any intersection of A-systems is a A-system, and
hence for any family of subsets P € P (T') one can define the smallest A-system
A(P) containing P by taking the intersection of all A-systems that contain P.

The following theorem shows that an analogue o also works when
taking A-extensions of 7r-systems.

Theorem 1.39 (77-A theorem). If P is a r-system, then A(P) = o(P).

Proof. It is enough to show that A(P) is a 77-system. We do this in three steps.

Step I: For all B € A(P) the set G, == {A € A(P) : AN B € A(P)}is a A-system.
We clearly have & € G,. Moreover, if A € G, then

A°NB=(AUB°)° =((ANnB)UB°)" € A(P)

so A° € G. Finally if (A,));2; is a sequence of disjoint elements of G, then

([OJAn) NB= D(An N B) € A(P),
n=1 n=1

solJ2, A, €q.
Step II: If A € A(P) and B € P, then AN B € A(P).

Let us fix B € P. In this case clearly P C G, so we see that G, is a A-system
containing P and contained in A(P), so we must have G, = A(P).

Step I11: If A, B € A(P), then AN B € A(P).

This time we fix B € A(P). By the second step we again see that P C G, and
hence Gy = A(P), which proves the claim. O

We are finally ready to show that probability measures are determined by
their values on a 77-system generating the o-algebra.

Theorem 1.40. Assume that (T, G) is a measurable space on which two prob-
ability measures y and v have been defined. Assume further that P C G is a
ni-system with o(P) = G and that u(A) = v(A) for all A € P. Then p = v.

Proof. Let F = {A € G : u(A) = v(A)}. Then by assumption P ¢ F and
by [Theorem 1.39] it is enough to show that F is a A-system. Clearly & € F.
Moreover, if A € F then A° € F, since

U(A) =1-u(A) =1-v(A) = v(A°).

Finally, if (A,,)52; is a sequence of disjoint elements of F, then

W(Ua) =Y utan =¥ v -v(Ua)
n=1 n=1 n n=1

=1
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1. Foundations

solJ2, A, eF O
As a corollary the uniqueness part of follows.

Extending measures is a somewhat delicate topic. Let us close the section
by giving two exercises for the curious reader willing to delve deeper into the
business.

Exercise 1.41 (Carathéodory’s condition). In the literature the o-algebra R is
often defined via a characterisation called Carathéodory’s condition. A set A C
T is said to satisfy Carathéodory’s condition if

u*(E) =pu*(E\ A) +p*(EN A)

for all E ¢ T. Show that A satisfies Carathéodory’s condition if and only if
A€R.

The advantage of Carathéodory’s condition is that it perhaps more easily adapts
to the situation where the measure we are extending is not finite. In that case one
needs multiple metrics to generate the right topology, see [4]].

The disadvantage is that 1 find it a bit magical/opaque, and for finite measures
the closure-approach might actually be a bit faster. .

Exercise 1.42. Let T be some setand P ¢ P (T). We say that P is a prealgebral’|
if the following conditions hold.

e WehaveT € P.

o« If A,B € P,then AN Band A\ B can be expressed as finite unions of
disjoint sets in P.

Show that still holds if we replace the assumption that P is an
algebra by the assumption that P is a prealgebra. .

One might also at first think that perhaps we could start with a measure y
defined on a 7-system S and then extend it to the o-algebra generated by S.
Indeed, in view of this is a natural thought since the unique-
ness of the extension would automatically be guaranteed. Unfortunately the
information contained in a 77-system does not guarantee the existence of an
extension, and indeed there are simple counter examples where an extension
does not exist.

Exercise 1.43. Construct a 77-system S on some set T and a function y: § —
[0, co] which is countably additive, but which cannot be extended to a measure
on o(S). Here countably additive on S means that whenever (4,,) is a countable

>This is nonstandard terminology. A similar structure has been used in the lecture notes 8],
where it was called a “semi-anneau’, but in English semiring usually means a slightly less
general structure.
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1. Foundations

family of disjoint sets in S such that their union A is also in S, then u(A) =
2, HA,). .

1.6 Uniform measure on [0, 1]

Armed with infinitely many coin tosses it is easy to construct a uniform prob-
ability measure A on ([0, 1], B), where B is the Borel o-algebra generated by
the closed intervals [a,b] with 0 < a < b < 1. The measure A is called the
Lebesgue measure on [0, 1].

Theorem 1.44. There exists a unique measure A on ([0, 1], B) which satisfies
A[0,¢]) =t forall t € [0, 1].

Proof. The uniqueness is clear since the intervals [0,¢] with t € [0,1] form a
n-system that generates ‘B.

To show the existence, let us consider a sequence (X,,);2; of independent
Bernoulli random variables constructed in the previous section and define the
random variable

(0]
Xi=) X, 2™
n=1
Then X € [0,1] always and X is measurable since it is the limit of random
variables Y X, 27" as N — co.

Let us define A := X_IP to be the law of X. Assume that ¢t € [0, 1] has the
binary representation t = Y 2 t,27" with ¢, € {0, 1}. Since

A({th) =P[X =t] =0,
we have A([0,t]) = A([0,1)), and
AMI0,t)) = P[X < t] = P[{X; < t; in the first index i where X, # t;}]
_y P[X; < t,] ﬁIP[Xj =t;] = iZ‘iti =t. O
i=1 j=1 i=1
From the proof we also see the following.

Corollary 1.45. There exists a probability space on which one can define a ran-
dom variable X with uniform distribution on the interval [0, 1].

Note that one could also ask for a random variable U which is uniform in
the open interval (0, 1). This can be obtained by setting

U(w) = ﬁc(w), if X(w) ¢ {0, 1} '

2 otherwise
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The variables X and U have actually the same law since we are just redefining
X in a set of measure 0.

1.7 Distribution functions and arbitrary laws on R

Definition 1.46. Let X be a real-valued random variable. The cumulative dis-
tribution function (c.d.f.) Fx: R — [0, 1] of X is defined by

Fy(x) = P[X < x]. .

The basic properties of Fy are given in the following lemma.

Lemma 1.47. Let X be a real-valued random variable with c.d.f. Fx. Then
o Fy increases monotonically from 0 to 1 as x goes from —co to co.
o Fy is right-continuous.
Proof. Exercise. 0

An important aspect of the c.d.f. is that it determines the law of the random
variable.

Theorem 1.48. Let X and Y be two random variables with Fy = Fy. Then X
and Y have the same law.

Proof. Let P be the mr-system formed by the closed intervals (—co, x], x € R.

By[Lemma 1.7]we have o(P) = ‘B, where B is the Borel o-algebra on R. By
definition the law of a random variable X is the measure X, P defined on ‘B,

and we have X, P((-00, x]) = Fx(x). Thus by[Theorem 1.40|if Fy = Fy, the

measures X, IP and Y, IP agree on P and hence on ‘B. ]

We will next look at going from c.d.t’s to random variables.

Theorem 1.49. Let F: R — [0, 1] be a right-continuous monotonically increas-
ing function with lim,_,_ F(x) = 0 and lim,_, . F(x) = 1. Then there exists a
probability space on which one can define a random variable with c.d.f. F.

Proof. Let us define the quantile function G(¢t) = inf{x € R : F(x) > t}
for t € (0,1) and let U be a uniform random variable on (0, 1). Then by the
right-continuity of F the random variable G(U) satisfies

P[G(U) <t] =P[inf{x € R: F(x) > U} <t] = P[F(t) > U] = F(t)

s0 G(U) has the right c.d.f. O

Let us close this section with the following helpful result.
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Lemma 1.50. One can simultaneously construct on a common probability space
a countable number of independent random variables (X,,);2, with c.d.f.s (F,);2;.

Proof. Exercise. 0
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Spaces of random variables

2.1 Borel-Cantelli lemma

Given an infinite sequences of events one often wants to know whether in-
finitely many of them happen, or even more strongly whether there are only
finitely many events that do not happen.

Definition 2.1. Let (4,));2, be a sequence of events.

finitely many of the events A, happen simultaneously.

+ The limsup event limsup, | A, = (7, .2, Ay is the event that in-

« Theliminf event liminf, A, =J>2, (.2, A is the event that even-

tually (starting from some random index #,) all the events A, happen.

*

The Borel-Cantelli lemma states that if the probabilities of the events A, de-
crease quickly enough, then with probability one only finitely many A, hap-
pen.

Theorem 2.2 (Borel-Cantelli lemma). Let (A,);2, be events. If )72 P[A,] <
0o, then P[limsup, | A,]=0.

Proof. Since )2, IP[A,] < oo, for any & > 0 we may pick an , € IN such that
Zﬁi’no ]P[Ano] < ¢. Then

o0 (o]
Pllimsup A,] < P[ U Al < Z P[A;] < e
n—00 k=n, k=n,
As & was arbitrary, this proves the claim. O

There is also a partial converse of this lemma in the case of independent
events.

Theorem 2.3 (Second Borel-Cantelli lemma). Let (A,),2, be a sequence of in-
dependent events. If ) 2| P[A, ] = oo, then P[limsup, | A,] =1

Proof. Exercise. O]
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2. Spaces of random variables

Example 2.4 (Records - taken from [3]). Let X, ..., X,, be the winning scores
in year n of some annual sports competition. We assume that X, ..., X,, are
independent and identically distributed and that their common c.d.f. is con-
tinuous.

Let E, == {X,, > max(X,, ..., X,_;)} be the event that a new record is made
in year n. We leave it as an exercise to check that P[E, ] = % and that E|, E,, ...
are independent.

Then since ) 2, P[E,] = >, % = 00, we see that new records are made
infinitely many times.
On the other hand this does not happen too often: Let F, = E, N E, ., be
the event that records are broken in two consecutive years. Then
(o] (e0] 1
Y P[E]=) < 00,
n=1 n=1 n(n + 1)
so with probability one this happens only finitely many times. .

2.2 The space I and convergence in probability

Let U be a uniform random number on the interval [0, 1]. Then we saw that
for any fixed x € [0, 1] we have P[U = x] = 0. Thus it follows that

P[U € [0,1]] = P[U € [0,1] \ {1/2}] = 1.

In facteven P[U € [0, 1]\ Q] = 1, since we are only removing countably many
points. All three events {U € [0,1]},{U € [0,1] \ {1/2}} and {U € [0,1] \ Q}
are therefore equivalent in a probabilistic sense. This motivates the following
definition.

Definition 2.5. Let A be an event.

« We say that A happens almost surely (a.s.) if P[A] = 1 and almost
never if P[A] = 0.

« In the latter case A is called a null set of P.
o If A =, then A happens surely. .

With this terminology established, let us turn to the main topic of this sec-
tion: How do we tell two random variables apart?

Certainly if two random variables X and Y are equal almost surely, there
should not be any difference between them in a probabilistic sense. Thus it is
natural to define the quotient space

I :={X: O — R : X measurable}/~,
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2. Spaces of random variables

where ~ is the equivalence relation that identifies random variables X and Y
such that P[X # Y] = 0. We will define other LP-spaces later on for p > 0, but
for now let us just assume this notation.

Remark. It is important to note that the space I’ depends not only on the o-
algebra F but also on the measure IP. Thus two random variables which were
equivalent under IP might not be equivalent under another probability mea-
sure PP and vice versa. With some abuse of terminology we will however still
continue calling the elements of I’ random variables. .

The following exercise shows that I is a vector space.

Exercise 2.6. Let X, X', Y,Y’ be random variables such that X = X’ and Y =
Y’ almost surely. Show that X +Y = X' + Y’ almost surely and also that if
¢ € R, then cX = cX' almost surely. .

Thus identifying random variables work mostly very nicely. One has to how-
ever be a little bit more careful when taking limits.

Proposition 2.7. Let X,, be random variables that converge almost surely. Then
a.s.

there exists a random variable X such that X, — X, and the same holds if

we replace each X,, with a random variable X, = X,, and X with a variable

X' S X. Thus almost sure convergence is well-defined for elements of L°.

Proof. Exercise. O

Remark. Proposition 2.7/ has some subtlety to it so for clarity let us note the
following.

« It might be good to write out what we mean when we say that X, con-
verges almost surely. Quite literally, this means that the set {w € Q :
lim,_, ., X, (w) exists} has probability 1 (one can show that the set is al-
ways measurable).

Similarly when we say that X, 23 X, we mean that the set {w € Q :
lim X, (w) = X(w)} is measurable and has probability 1.

n—00

« The above proposition does not say that if X, converges almost surely to
some function X that then X is measurable. This holds in general if and
only if P is complete, meaning that if A has P[A] = 0, then all subsets
B c A are measurable and IP[B] = 0. .

By moving from pointwise defined random variables to equivalence classes
in I we have thus retained the nice vector space structure and even pointwise
limits work nicely when they are replaced by almost sure limits. On the other
hand we have ensured that all the elements in L° are at least honestly different
(without the extra redundancy caused by a.s. equal random variables) and we
can now turn to the question of how different.
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2. Spaces of random variables

A natural way to compare two random variables X,Y € L° would be to ask
how big is P[|X — Y| > A] for any given A > 0. Via a nice trick this kind of
thinking can even be refined into an honest metric.

Definition 2.8. The Ky Fan metric dyy: [° x [’ — [0, 1] is defined by
dep(X,Y) = infle > 0 : P[|IX — Y| > ¢] < ¢}

for X,Y € L. .
Theorem 2.9. The pair (I°, dy ) is a complete metric space.

Proof. We leave showing that dy, is a metric as an exercise.

Let us show the completeness. Assume that (X,,),.2, is a Cauchy sequence in
I°. Since it is enough to show that X, has a converging subsequence, we may
assume that di(X,,, X,,) < 27" forn > m > 1. Hence we get in particular
that P[|X,,,; — X,,| > 27"] < 27" for all n > 1. By Borel-Cantelli thus almost
surely | X,,.; — X,,| < 27" for n large enough, and we see that the series

o0
X+ Y (X - X,) =X

n=1

converges almost surely. Finally we note that X, 2 x implies that for any

€ > 0 we have
Ip[ﬂ LJ1x, - x> ¢l] =o.

ny n2n,

Hence we may pick for any € > 0 an integer n,, so large that P[| X, - X| > e] < ¢
for n > n,. This shows that di(X,,, X) < € and that X, converges to X under
the metric dgp. O

From the above proof we also see the following important important facts.

Proposition 2.10. Let (X,,)52, be a sequence of random variables.

o If X, converges in I°, then it has a subsequence that converges almost
surely.

o If X, converges almost surely, then it converges in I°.

Convergence in the metric dg is often called convergence in probability,
and it is equivalent to the following definition.

Definition 2.11. Let (X,));2, be a sequence of random variables. We say that
X,, converge in probability to a random variable X if

lim P[|X, - X|>¢] =0
n—0o0
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2. Spaces of random variables

forall e > 0. .

Proposition 2.12. A sequence X,, of random variables converges in probability
to a random variable X if and only if dxp(X,,, X) — 0.

Proof. Assume first that X,, converge in probability to X. Fix & > 0 and choose
n, so large that P[|X,, — X| > €] < e for all n > n,,. Then by definition

diep(X,, X) =infle : P[|X,, - X| >e] <e} <e¢

for n > n,. Since & was arbitrary we see that dgp(X,,, X) — 0.
Conversely, assume that dg(X,,, X) — 0. We want to show that

lim P[|X, - X|>¢] =0

n—00

for any fixed ¢ > 0. Notice that for any § € (0, ¢) there exists n, > 1 such
that for all n > n, there exists s < § for which P[|X,, — X| > s] < s. But this
also implies that P[|X,, — X| > €] < P[|X,, — X| > s] < s < §, so since § was

P
arbitrary, we have that X, — X. ]
We will next consider approximation in I by simple random variables.

Definition 2.13. We say that a random variable X € L” is simple if it has a
representative that is simple according to [Definition 1.26} and we denote the
set of all simple variables in L° by S. .

It is easy to check that S is closed under addition and scalar multiplication,
so S is actually a vector subspace of L. Since we know (by [Proposition 1.27)
that for any random variable X there exists a sequence of simple random vari-
ables converging to X almost surely, and that almost sure convergence implies
convergence in probability, we obtain the following.

Proposition 2.14. The set S is dense in I°.

Let us close this section with the following useful result, which also shows
that convergence in probability only depends on the null sets of the measure.

P
Proposition 2.15. Let (X,)),_, and X be random variables. Then X, — X
if and only if for every subsequence (X, )2, there exists a further subsequence

a.s.
(X, Jey such that X, — X.

Proof. It X, Zx , then every subsequence of it converges also in probability,
hence has a further subsequence that converges almost surely.

Conversely, assume that almost surely converging sub-sub-sequences exist
but X, does not converge in probability to X. Then there exist ¢ > 0 and a
subsequence (Xnk),i";1 for which ]P[IXnk - X| > €] > eforall k > 1. However by
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a.s.
assumption there exists a further subsequence (X,, );._; suchthatX, — X,
o m

P
hence X, — X, which is a contradiction. ]
As a corollary we easily obtain the following.

P P
Proposition 2.16. Assume that X,, — X and Y, — Y. Then the following hold:
P
e X, +Y, 5> X+Y
P
e XY, > XY
P
o IfY,,Y # 0 almost surely, then X, /Y, — X/Y.

P
« If g: R — Ris continuous, then g(X,,) — g(X).

Proof. Exercise. H

2.3 The space L™

The next space we will take a look at is the space L°°, which consists of almost
surely bounded random variables.

In I° the metric mostly ignored the size of the difference between two ran-
dom variables - it was enough that they were close in a large set but outside
that set they could differ alot. In L™ on the other hand the maximal difference
is all that matters.

Definition 2.17. We define
[®={Xel: X~ < oo}

where
[ X0 = inf{A > 0 : P[|X| > A] = 0}. R
Theorem 2.18. The space (L, || - ||;e0) is a Banach space.

Proof. 1tis clear that || X||;« does not depend on the representative of X ¢ 10
To check that || - [|;c is @ norm, let us show the triangle inequality and leave
the other properties for the reader to check. We have

PlIX + Y] > [ Xllgeo + 1Yo ] < PUX] > X[l 0 01 [Y] > Y]] 0]
< PIX] > Xl ]+ PIY] > [Vl ] = 0,

*Recall that Banach space means a complete normed space.
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and hence
[ Xleo + 1Yo € {A 20 :P[IX]| >A=0]},

whence
X + Yoo < 1 Xzeo + Y leo.

Let us then show completeness. Assume that X, is a Cauchy sequence in
L. Then for all n,m > 1 the events A, = {|X,| < [|X, |~} and A,,, =
{IX, - X,,,| <X, — X,,|l;} have probability 1 and thus also the event

(o] (o]
A=A, [ Aum
n=1 nm=1

has probability 1. For all w € A the sequence (X, (w));2, is Cauchy in R since
we have the inequality

1X,(@) = X, (@) € I1X,, = Xpllgr (1, > 1) (21)

and X, is Cauchy in L*°. By the completeness of R we therefore see that
X,, converges a.s., and by |[Proposition 2.7| there exists a measurable X such

that X, Z X, Infact, X has a pointwise defined representative given by
X(w) = lim,,_,, X,,(w)1,(w) and we will work with this representative. More-
over, since the upper bound is uniform in w, we can pick n, so large that
Xy, = Xppllpo < 1 forallm > n, and then

| X(w)| = lim |X,,(w) - Xno(w) + Xno(w)l < IIXnO o + 1
m—00
forall w € A, and thus X € L. Similarly

1 X, (w) - X(w)| = |X,(w) - lim X,,(w)|] <sup|X, —X,,lljc0 =0

m2n

uniformly for w € A asn — 00, so lim X, = Xll;o = 0. [

n—00
From the proof above we see that the convergence in L™ is very strong and
implies in particular convergence almost surely.
a.s.
Proposition 2.19. If X, — X in L™, then X,, — X.

By looking at the proof of [Proposition 1.27| one can easily check that the
same proof also shows the following.

Proposition 2.20. The set of simple random variables S is dense in L.
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2.4 Expectation and the space L!

Our next goal is to define the Lebesgue integral f , X dPP for so called integrable
random variables X. The space of integrable random variables is also called the
I -space.

In the case of a probability space the integral is called expectation and we
use the notation E[X] = IQ X dIP. We will later see how to define the integral
for other measure spaces.

We will construct the space L' and the expectation map E: L' — R by first
defining [E[X] on simple random variables X € S and then approximating
other random variables by elements of S.

Let X € S be a simple random variable and fix a representative X, of X that
takes only finitely many values. Then we have

n
Xy = Z a g
k=1

where 7 is the number of distinct values attained by X, g, € R are the values
themselves and E;. = X 1 ({ar}). We then define

n
E[X] = ) a;P[E;].
k=1
We note that this definition does not depend on the representative X, since
the sets E;. with positive measure can only differ by a set of measure 0 between
representatives.
Two basic properties of EE for simple functions are given in the following
lemma.

Lemma 2.21. Let X,Y € S. The expectation satisfies the following.

o Linearity: E[X + Y] = E[X] + E[Y] and E[cX] = cE[X] forc € R.

o (A special case of) Holders inequality: |E[XY]| < E[|X|]|Y]l;c0-
Remark. Above E[|X|] is well-defined since X € S = |X]| € S. .

Proof. Linearity: The scalar multiplication part is clear. For the claim on the
sum assume that X and Y have the representations X = /' a;1; andY =

re1 bilp, . Then the sets E; N Dy partition 2 and on the part E; N D the
random variable X + Y takes the value a; + b;.. Hence

E[X +Y] = Z(aj +b)P[E; N D] = D a/P[E; N D] + D b P[E; N D;]
jk jk jk
= E[X] + E[Y].
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Holder’s inequality: We can w.l.o.g. assume that P[D,] # 0 for all k, and
then

[E[XY]| = | ) abPlE; n D]l < ¥ |a;|P[E; 0 D) max{lby| : k = 1,...,m}
i ¥
= E[IXHY e 0

The above theorem shows that [ is a linear functional on S which satisfies
the triangle inequality |E[X]| < E[|X|] for X € S (substitute Y = 1 in Holder’s
inequality). Note also that from the triangle inequality one also gets mono-
tonicity: If X <Y, then E[Y — X] > |E[Y - X]| > 0, so E[X] < E[Y].

Let us define the norm || - | : S — [0, 00) by setting | X||; = E[|X]]. Itis
indeed a norm since by monotonicity we have the triangle inequality

IX+Ylp =EIX + Y] < E[IX]+ Y]] = 1 Xl + Y]l

and the other required properties are easy to see from the definition of E.

We have now defined a normed space (S, || - [;1). Our strategy next is to
take the Banach space completion of S under the norm || - ||;; and show that it
can in fact be viewed in a natural way as a subset of I°, a subset which we will
then call L'. Let us begin by recalling the following basic theorem regarding
completions of normed spaces.

Theorem. Let (V | - ) be a normed vector space over R. Then there exists a
Banach space V and a mapping 1: V. — V such that 1 is a linear isometry and
(V) is dense in V. The space V is called a completion of V and it is unique up
to isometric isomorphisms.

Moreover, if f: V — U is a uniformly continuous map to a complete metric
space U, then f extends uniquely to a uniformly continuous map f: V — U.

We will take this result for granted. If the reader has not seen it before or
just wants to refresh their memory, we direct them to for a proof
of the second part and[Appendix Blfor a proof of the existence of completions
of normed spaces.

Let now S be any completion of S under the norm |-||;; and denote the norm
in Sby | - ls. We begin by noting that the Ky Fan metric is weaker than the
L'-norm.

Lemma 2.22. If X,Y € §, then dgp(X,Y) < VE[|X - Y]].

Proof. Exercise. Hint: Show that P[|Z]| > €] < ¢ 'E[|Z|] for all Z € S and
€ > 0 and apply thisin the case Z = X - Y. ]

In particular the identity map S — L is linear and continuous (and hence
uniformly continuous), so it admits a continuous linear extension T': S — I°.
This is illustrated in the following commutative diagram:
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Sl lp) —2 (10, dgp)

\ T
|
(S - 1ls)
Our next task is to show that T is injective — this will allow us to define

L' == T(S) and view L' as a copy of S sitting inside I°. For this we will need the
following lemma.

Lemma 2.23. Let (X,,);2, be a sequence of simple random variables which con-
verges in probability to 0 and also such that 1(X,) converges in S to some X € S.
Then X = 0.

Proof. It is enough to show that || X, |l — 0. Foranym > 1and & > 0 we have

lim sup E[|X,,|] < lim sup IE[anl]l{an|$e}] + lim sup ]E“Xrll]l{an|>e}]

n—-0o0 n—-00 n—-00
< & +lim sup B[|X,, - X,,1] + | Xl lim sup P[|X,,| > ]
n—-,oo n—00
=¢e+limsup [i(X,) — (X, )lg = e+ |1 X - X, [l5.
n—-00
Letting m — oo and &€ — 0 on the right hand side shows the claim. O]

Using the above lemma it is easy to see that T is injective: Since T is linear,
it is enough to show that if T(X) = 0 for some X € S then X = 0. But this is
now clear since for any such X we may pick a sequence (X,,)%, in S such that
i(X,) — X in S and then by assumption

0=T(X) = lim T((X,)) = lim X,,

where the limit is in probability, so by the lemma above X = 0.
We have thus shown that the map T is an injection that continuously embeds
S into I and we can define
L' =T(S).

We also extend the definition of | - [|;; from S to L by setting
XN = 1T (Xl

forall X e L'\ S.

This way L! has now become another isomorphic completion of S and we
may forget about S.

At this stage it is probably a good idea to pause a little and collect what we
have actually shown into a theorem.
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Theorem 2.24. There exists a unique Banach space (L', | - 1) satisfying the
following properties:

e WehaveS c L' c I.
o L' is a completion of S under the norm || - | 1.

o L' is continuously embedded in I°, or in other words: convergence in L!
implies convergence in probability.

Let us also introduce one more term.

Definition 2.25. A random variable X € I° is called integrable if X € L'.
We next note that also the expectation can be extended from S to L.
Proposition 2.26. The map E: S — R extends uniquely to a continuous linear
map L' — R.
Moreover, Holder’s inequality still holds: if X € L' andY € L, then XY € !

and
IE[XY]] < XN 1Y oo

Proof. The extension is clear since L' is a completion of S and E is linear and
continuous on S under the | - ||;; -norm.
For the second claim, let (X,));2, and (Y,);2, be two sequences of simple

random variables such that X, — Xin L' andY, — Y in L, By

we have
IE[X, Y, ]| < I1X, [ 1Y, lleo-

Clearly the right hand side tends to || X||;: [|Y[|;«, so it is enough to check that

P
X,Y, — XY in L'. This is true because X,Y, — XY and the sequence is
Cauchy in ', since

E[lX,Y, - X, Y|l <E[X, - X,IY,|+1Y, -Y,IX,I]
< ”Xn - )(;/n”L1 ”Yn”LOO + ”Yn - Ym”Loo "Xm ”Ll)

and sup, _, [IY,ll;~ and sup, ., [IX,, [ are bounded. O

Here are some further properties of the expectation.

Proposition 2.27. The following hold:
« Triangle inequality: For any X,Y € L' we have |E[X]| < E[|X]].
« Monotonicity: If X,Y € L' and X <Y, then E[X] < E[Y].

o L embeds continuously in L' IfY € L, then Y € L' and Y] <
Y ll;e0. In particular convergence in L implies convergence in L'.
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o Only size matters: If X € LandY e L' and |X| < |Y|, then X € L.
o Reality check: If X € L', then |X| € L' and | X = E[|X]].

Proof. The first two items follow directly from Hoélder’s inequality like we saw
in the case of simple functions above.

Similarly to see that L™ embeds continuously in L', take X = 1 in Hélder’s
inequality.

For the second last point we can write X = Yg(Y), where g(Y) = X/Y if
Y # 0 and 0 otherwise. Then g(Y) € L* and the claim again follows from
[Proposition 2.26}

For the reality check we notice that applying the previous point to X = |Z]
and Y = Z we see that the map Z — |Z| from L' to itself is well-defined. It
is also continuous since by monotonicity E[||X| — |Y||] < E[|X - Y]] for all
X,Y € L'. Hence also the composition X — E[|X]] is a continuous map
I' - R, and as the equality [|X||;; = E[|X|] holds for all X € S we see that it
must by continuity hold for all X € L'. O]

Let us close this section by giving another common metric for I°.

Proposition 2.28. The map (X,Y) — E[|X — Y| A 1] = d}o defines a complete
metric on I° which is equivalent to the Ky Fan metric.

Proof. Exercise. ]

2.5 Uniform integrability and convergence theorems

We have seen that convergence in L' implies convergence in probability. It is
therefore natural to ask the following question: if we know that a sequence
converges in probability, what extra condition is needed for it to converge in
L'? The answer turns out to be uniform integrability, which guarantees that the
random variables do not concentrate their mass in smaller and smaller subsets
of the probability space.

Example 2.29. Consider the probability space ([0, 1], B, ), where A is the uni-

form measure on [0, 1]. Define a sequence of random variables X, by setting
P

X,(x) = nlljy,/,;(x). Then X;, — 0but E[X,,] = 1 for all n so X, does not

converge in L' .

The above example presents a typical case of a sequence that is not uniformly
integrable.

Definition 2.30. Let (X;);.; be a family of random variables in L'. We say that
the family is uniformly integrable if sup, _, E[|X;|] < coand for all € > 0 there
exists 6 > 0 such that

E[|IX;|14] <&
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foralli € I and A € T such that P[A] < 6. .

Remark. In analysis one often drops the first condition sup, ; E[|X;|] < co, but
it is standard to include it in probability theory. The most important practical
consequence of this condition is that uniformly integrable random variables
are tight, meaning that

lim sup P[|X;| > A] = 0.

A=00 jeg
An alternative definition of uniform integrability then is to say that
lim sup E[|X;|1x,.,] =0,
A—00 jeg
and we leave the proof as an exercise. .

Lemma 2.31. For any X € L' the singleton family {X} is uniformly integrable.

Proof. Let (A,)2, be any sequence of events such that P[A,] — 0. Itis
enough to show that ]E[IXlIlAn] — 0asn — oo.

Let (Y,,)%>, be a sequence in L such that Y, — X in L'. Then

lim sup IE[|X|11An] < lim sup(E[| X - lellAn] + ]E[IlellAn])

n—00 n—00
< ]E“X - le] + ||Ym||L°° lim Sup]P[An] = ”X - Ym”L1
and the claim follows by letting m — oo. ]

Theorem 2.32. Let (X)), be a sequence in L'. Then X, converge in L' if and
only if X, converge in probability and the sequence is uniformly integrable.

Proof. Assume first that X, — X in L'. Then we already know that the se-
quence converges in probability, so it is enough to check that it is uniformly
integrable. For any & > 0 there exists §, > 0 such that for all events A for
which P[A] < §, we have E[|X|1,] < /2. Thus there exists n, € IN such that
for n > n;, we have

E[|X,|1,] < E[IX, - X|1,] + E[|X[1,] <e.

On the other hand the family {X;, ..., X, _;} consists of just finitely many ran-
dom variables each of which is individually uniformly integrable, so there exist
6y,...,0, 1 > 0 for which E[|X,[1,] < ¢ when P[A] < §,,1 <n <n; -1
Picking 6 = min(dy, 9, ...,0d,, ;) proves the claim.

Assume then that X,, converge in probability and that they are uniformly
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integrable. It is enough to show that X,, is Cauchy in L'. Let & > 0. We have
E[IX, - X, < E[IX,, - X, 1yx x jz] + EIX, = Xl Tjx x 1og]
<e+ ElX, 1 x —x 5] + E[ Xl Lix —x jse]-
Since the sequence is Cauchy in probability, we have
P[|X, - X,,| >¢] =0
as m,n — oo. Thus by uniform integrability we get
E[|X, - X, |] < 3¢
for large enough n, m. O]

A useful criterion for checking uniform integrability is the following.

Lemma 2.33. Assume that (X;),; is a family of random variables and that there
exists Y € L' such that for alli € I we have |X;| <Y almost surely. Then the
family (X;);c; is uniformly integrable.

Proof. Obvious since for any event A we have E[|X;|1,4] < E[Y1,]. O

Corollary 2.34 (Dominated convergence theorem). Assume that (X,,);2, is a
sequence which converges in probability to X and that there exists Y € L' such
that we have |X,| <Y a.s. foralln > 1. Then X € L' and

lim E[X,] = E[X].

n—,00
Proof. By the sequence (X,,);,2; is uniformly integrable and the
claim follows from O

In the rest of the section we will look at expectations of non-negative random
variables. To this end we make the following definition.

Definition 2.35. Assume that X is an a.s. nonnegative random variable which
is not integrable, i.e. X ¢ L'. We then define E[X] := co. Here we allow X to
also take the value co with positive probability.

More generally any random variable X can be split into its positive and neg-
ative parts, X = X™ — X~ with X" and X~ non-negative, and if exactly one of
X*and X~ is not in L', we may define E[X] = +c0 accordingly. .

To see that the definition is natural, we note the following.

Theorem 2.36 (Monotone convergence theorem). Assume that (X))o, is a
pointwise increasing sequence of random variables taking values in [0, co] and

41



2. Spaces of random variables

let X denote the pointwise limit. Then

lim E[X,] = E[X].

n—00

Proof. If X € L', we are done by the dominated convergence theorem.

If X ¢ ', then it is enough to show that the increasing sequence E[X, ] is
not bounded. To obtain a contradiction, assume that it is. Then for m > n we
have

E[IX,, - X,I| = E[X,,] - E[X,],

but since the sequence E[X,,] converges and is therefore Cauchy, we see that X,
is Cauchy in L' and hence converges to X in L', which is a contradiction. []

We close this section with one more useful result.
Theorem 2.37 (Fatou’s lemma). Let (X,,);2, be a sequence of random variables
taking values in [0, co]. Then

E[lliminf X, ] <liminfE[X,].

Proof. Let us write Y, = inf;,,, X;. ThenY, < X, for alln > 1, and moreover
the sequence (Y),),,2, increases monotomcally Thus by the monotone conver-
gence theorem

Eflliminf X, ] = ]E[hm Y,]= hm E[Y,] = liminfE[Y,] < liminf E[X, ].

n—-,oo n—-0oo0
U

As an easy corollary we have the following version for random variables con-
verging in probability.

Corollary 2.38. If (X,,);.2, is a sequence of non-negative random variables con-
verging to some random variable X in probability, then

E[X] < liminf E[X, ].

n—00

Proof. Let X, be a subsequence such that
lim E[X,, ] =liminf E[X,].
k—oo k n—0o

This subsequence contains a sub-sub-sequence X,, which convergesto X a.s.,
and by choosing suitable representatives we may actually assume that X, —

X surely without altering the value of any of the expectations. The clalm then
follows from Fatou’s lemma. O]
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2.6 Integration on general measure spaces

Although our main interest is in probability spaces, it is still useful to have the
Lebesgue integral defined on other measure spaces as well, the most impor-
tant case being of course RY with the Lebesgue measure. In this section we
will briefly and without proofs explain how one can accomplish this by using
probability measures and the integral we have already defined.

Definition 2.39. Let (T, G, ) be a measure space. We say y is o-finite if there
exists a countable (finite or infinite) partition (4,,),, of T into disjoint measur-

able subsets such that 0 < (A, < oo for all n. .
Let (T, G, u) be a o-finite measure space with a partition (4,,), as above.
Define probability measures y,, on G by setting y,,(E) = %fj)”) and for a non-

negative measurable function f: T — [0, co] set
L fdu=Y) uA,) L f duy

It is an easy exercise to show that the definition of IT f du does not depend
on the partition A,. If f is a signed measurable function we can write it as
a difference of its positive and negative parts ™ and f~ and define I fdu=

j frdu- j f~ du, provided that at least one of the integrals on the right hand
side is finite. If both of them are finite, we say that f is integrable, and this also
defines the class L' (u).

Finally (just for completeness since we won’t need it later on), let us note that
if (T, G, ) is a general measure space, we may for all measurable non-negative

f define
| rau=| f du,
T {x€T: f(x)>0}

provided that the restriction of y to the set {x € T : f(x) > 0} is o-finite.
Otherwise we set jT fdu = oo, which makes sense, since if y restricted to
{x € T : f(x) > 0} is not o-finite, at least one of the sets {x € T : f(x) €
[27",27"1)} where n € Z must have infinite mass.

We leave it for the reader to check that all the basic results for integrals in
IProposition 2.26| and [Proposition 2.27| continue to hold, with the exception
that L (u) is not anymore necessarily a subset of L' (i). Also the monotone
and dominated convergence theorems as well as Fatou’s lemma still hold.

2.7 Absolute continuity of measures

Let us next discuss another way to characterise o-finiteness as those measures
that are in a sense equivalent to a probability measure. Our starting point will
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be the following observation.

Lemma 2.40. Assume that (T, G, ) is a measure space and that f : T — [0, co]
is a non-negative measurable function. Then the map v: G — [0, 00] defined

by
v(A) = J fdu (2.2)
A

is a measure. Moreover for any measurable g we have g € L'(v) if and only if
gf € L'(u), in which case

Jgdw Jgfdﬂ-

Proof. Let (A,);2, be asequence of disjoint measurable subsets. By the mono-
tone convergence theorem we have

V(QAH) = J Iya,fdyp= thnfdu Z,ZL"fd“’

so countable additivity holds and v is a measure. Moreover, if g = 1 is an
indicator function then clearly I gdv = v(E) = J 1 f du holds. By linearity
the identity also holds in the case where g is a simple function and hence by
approximation for all g € L' (v). O

The relationship between the two measures in motivates a couple of
definitions.

Definition 2.41. Let (T, G) be a measurable space and ¢ and v two measures
on G.
« We say that v has the Radon-Nikodym property relative to y if there
exists a measurable function f: T — [0, 0co] such that

v(A) = L fdu

for all A € G. The function f is called a density function or a Radon-
Nikodym derivative of v relative to ¢ and we often write f = Z—:.

» We say that v is absolutely continuous w.r.t. g and write v <« pif u(A) =
0 implies v(A) =0 forall A € G.

» We say that the measures ¢ and v are equivalent and write 4 ~ v if they
have the same null sets, i.e. v < pand y <« v. .

Below are a couple of preliminary observations regarding absolute continu-
ity and the Radon-Nikodym property. The first one is a kind of a chain rule.
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Lemma 2.42. If y, v and 1 are measures on the same o-algebra and n has the
Radon-Nikodym property relative to v with a density %, and v in turn has the

Radon-Nikodym property relative to y with a density Z—:, then 1 has the Radon-
Nikodym property relative to y with a density %j—;.
Proof. Simple unraveling of definitions. O

The second one is that having the Radon-Nikodym property implies abso-
lute continuity.

Lemma 2.43. If v has the Radon-Nikodym property relative to y, then v < p.
Proof. Trivial since anything integrated over a set of measure 0 equals 0. [

A central nontrivial result in measure theory is that if 4 is a probability mea-
sure then the converse holds.

Theorem 2.44 (Radon-Nikodym theorem). Let y be a probability measure,
and let v be absolutely continuous w.r.t. yu. Then v has the Radon-Nikodym
property relative to p.

Proof. See|Appendix C [

Finally, let us state a useful characterisation of o-finite measure spaces.

Proposition 2.45. A nonzero measure y on a measurable space (T, G) is o-finite

if and only if there exists a probability measure v on G such that u ~ v and

du

7, < 00 almost surely.

Proof. Assume first that such probability measure v exists. Pick a representa-
tive of 3—5 that is finite everywhere and consider the disjoint sets A, = {Z—f €

[k, k +1)}. Then we have that | J;2, A = T and moreover u(A;) = IA Z—’C dv <
k

k + 1, so u is o-finite.
Assume then that y is o-finite and let (A,,)52, be a partition of T such that
u(A,) < ooforalln > 1. We can then define a probability measure v by setting

(0e) HAn
® =], 2 sy

where C = (372, 2"!(41(14;;) )~! is a normalising constant (well-defined since g is

not identically 0). Then clearly v(E) = 0 if and only if 4(E) = 0 and thus v and
p are equivalent measures. Moreover, we have

d 1
ab _ Cc! T < 00
dv 0 ___ _TAn

n=1 2"(1+u(4,))
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almost surely. [

2.8 Lebesgue measure on R

We have already seen how to construct the uniform measure A, on [0, 1] using
infinitely many Bernoulli random variables and in a similar manner we can
define A, for n € Z to be the uniform measure on the interval [n,n + 1].

Let us now consider the map A: B — [0, 0o] given by

MA) =Y L(AN[nn+1]).

nez
It is easy to check that A is countably additive and hence a measure.

Proposition 2.46. We have A([a,b]) = b — a for all —co < a < b < 0.
Proof. Exercise. 0

This is also enough to characterise the measure.

Exercise 2.47. Let y and v be o-finite measures on a measurable space (T, G)
that agree on a r-system P generating the o-algebra. Assume further that there
exists a sequence (A,);2; of sets in P such that  J72, A, = T and u(4A,) < co
and show that then y = v. .

Itis customary to write j f(x)dA(x) = J f(x) dx when the integrating mea-

sure is the Lebesgue measure. The following theorem is of huge practical im-
portance.

Theorem 2.48 (Fundamental theorem of calculus). Assume that f is continu-
ously differentiable on an interval [a,b] C R. Then

b
J f'(x)dx = f(b) - f(a).

Proof. Exercise. O]

Remark. Let us mention that in general it is not hard to show that if a function
is Riemann integrable, it is also Lebesgue integrable and the integrals agree.
Secondly, let us also mention that the assumption that the derivative is con-
tinuous is in fact not needed. It is enough to assume that the derivative is inte-
grable, see e.g. [[6, Theorem 7.21]. We leave the further studies of these topics
to a real analysis and/or measure theory course. .

Having defined the Lebesgue measure we may now formally say what it
means for a distribution to have a probability density function.
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2. Spaces of random variables

Definition 2.49. Let py: R — [0, 00) be a measurable function with

Joo px(x)dx = 1.

—00

We say that a random variable X has a probability density function (p.d.f.)
pyx if its law satisfies

X, P(A) = L () dx

forall A € B. I

Let us close this section with the following change-of-variables formula,
which is useful when computing expectations in practice.

Proposition 2.50. Let X be a random variable. Then for any non-negative mea-
surable F: R — R we have

E[F(X)] = jF(x) (X, P)(x).

Moreover, for general measurable F the composition F o X is integrable w.r.t. IP
if and only if F is integrable w.r.t. X, P, and in this case the above equality holds.
In particular, if X has a probability density function py, then

ELFCO] = | FGxpx (x) dx.

Proof. 1t is clear that if we can show the result for non-negative F, then the
general signed case follows by splitting into positive and negative parts. More-
over, the second formula in the case where X has a probability density follows
from|Lemma 2.40|after we have shown the first formula.

Notice first that if F = 1, is an indicator function of some Borel set A ¢ R,
then the formula holds since by definition

E[F(X)] = P[X € A] = X, P(A) = J Fd(X,P).
R

By linearity the formula thus holds whenever F is simple (takes only finitely
many values).

If F is a general non-negative measurable function, then we may consider
the sequence F, = (|2"F]/2") A n, which consists of simple functions and
converges monotonously to F. By the monotone convergence theorem then

E[F(X)] = lim E[F,(X)] = lim J F,d(X,P) = J Fd(X,P). [
n—00 n—oo Jr R

Remark. The above change-of-variables formula holds also for T-valued ran-
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2. Spaces of random variables

dom variables where (T, G) is some measurable space, and in particular for
random vectors having a probability density in R also the analogue of the sec-
ond formula in[Proposition 2.50/holds. The proof is essentially the same.

2.9 LP-spaces for general p

Let us return again to the setting of probability spaces. So far we have defined
three L spaces, namely when p € {0, 1, 00}. In this section we will complete
the picture to any p € [0, 00].

Definition 2.51. The space L? for p € (0, c0) is defined by
I ={Xel:|X|, < oo}

where
IXI = (E[IXIP])VP. .

We will soon see that || - ||;, is @ norm for p > 1. This is not however true
for p < 1 and in this case one has to think of | - ||;, as just being no more than
notation.

Let us start by looking at a bunch of (very) useful inequalities.

Theorem 2.52 (Jensen’s inequality). Let ¢ : R — R be convex, meaning that

p(tx + (1 - t)y) < tp(x) + (1 - t)p(y)

forall x,y € R, t € [0,1]. Then for any random variable X such that E[X] is
defined (i.e. at least one of E[X "] and E[X "] is finite) also E[p(X)] is defined
and we have

Elp(X)] > o(E[X]).

Proof. Exercise. ]
As a corollary we see that L7 ¢ L when g > p.
Corollary 2.53. We have | X||;, < || X|l;4 for 0 < p < g < 0.

Proof. The case g = 00 is easy, so assume that g < 0o. Applying Jensen’s
inequality with the function x - x%/? we have

Xl = EIXIPDY? = (E0X1PD7)" < EIXIT)Y = |X]yp. O

The next inequality is convenient (among other things) when one wants to
derive estimates for expectations of products of random variables.
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2. Spaces of random variables

Theorem 2.54 (Holder’s inequality). Let p,q € [1,00] be such that

1 1
—+-=1
P q
and assume that X € [P andY € [4. Then XY € L' and
XYl < IXN e 1Y NIz

Proof. We note first that for any a,b > 0 we have Young’s inequality

P
a
ab< — + —.

P q

The case when a or b is 0 is clear, and otherwise we may write a? = e° and
bl = €' for some s,t € R. Then by the convexity of the exponential function

we have , ,
1.1, e ¢ a bl
ab=ertidt < 4 = 4

p g9 P 4
Let us now prove the claim itself. Again the case when either || X||;» or [|Y|;»
equals 0 is trivial since then X or Y is 0 almost surely and also E[|XY|] = 0.

We may thus assume by scaling that | X||;, = [|Y|;s = 1. Then letting a = |X]|
and b = |Y| and integrating gives us the inequality:

X|P Y|4 1 1
E(IXY]] < E [L ; i] = S, O
p q P q

Theorem 2.55 (Minkowski inequality). Let X,Y € L? for p € (0, 00]. Then
IX + Y15 < IXIE + VI
Proof. For p € (0,1) we have
IX + Yl = E[IX +YI?] < E[IX|P] + E[|Y|?]

by the inequality (a + b)? < a? + b fora,b > 0.
For p = 1 and p = co we already know the result from earlier sections.
For p € (1, 00) letgbe such that %+%1 = 1. We may assume that E[| X+Y|?]

0, since otherwise the inequality is trivial. Then by the triangle inequality and
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2. Spaces of random variables

Holder’s inequality we have

E[|X +Y|?] < E[|X||X + Y|P7!] + E[|Y]|X + Y|P7!]
< IXNp X + Y12 g + 1Y e 11X + Y127l
= (IXlly + IYll) (B[ X + YIP])Y4,
and the claim follows by dividing by (E[|X + Y|? DVa, O

Let us next define

E[|X-Y|A1], ifp=0
dp(X,Y) = 11X - Y|, if p € (0,1)
I1X = Yl if p>1.

Theorem 2.56. The space (L, d,,) is a complete metric space for all p > 0 and
in particular a Banach space for p > 1.

Proof. Recall that we already know the result for p € {0, 1, co}. In other cases
it follows from the Minkowski inequality that d;, is a metric. Moreover, for
p = 1 the metric is given by an actual norm, so L is a normed space in this
case.

To show that the spaces are complete, we note that if X,, is Cauchy in L? for
p > 0, then it is in particular Cauchy in I° since

E[|X, - X,,I A 1] < E[|X,, — X,,|P]
if p € (0,1) and
E[lX, - X, In1] <X, - X, Ilp <X, = X, Il

if p > 1. Thus X,, converges in L’ to some random variable X. By
fary 2.38 we then have
pAL PAL

N ..
||X||£D < lim 1nf||Xk||P’\1 < lim inf(|| X, — Xnolly, + ||Xn0 l;, ) < oo
k—oo k—o0

where X, € LF is chosen in such a way that | X — X, || < 1 forallk > nj,
Thus X € L and similarly

E[IX - X,|°] < lim inf E[| X, - X,|?] < sup E[|X, ~ X, 7] — 0
—00

k=n
asn — 0oso X, — XinLP. O

Let us close this chapter by giving the following summary of the spaces we
have studied:
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Figure 2.1.: Relationships between L -spaces.

« The spaces (L) ,¢[o,0) form a decreasing set of complete metric spaces.

o The embedding L c L1 for co > p > q > 0 is continuous. In particular
if X, is a sequence of random variables that converges in L7, it will also
converge in 1.

o The spaces with p > 1 are Banach spaces (the metric is given by a norm).
o The smaller spaces are dense inside the larger ones.

« Convergence a.s. does not define a space of its own but is related to the
space L in the following way: If a sequence converges a.s., it will con-
verge in I°. Conversely if a sequence converges in L° it will contain a
subsequence which converges a.s.

« Convergence in L’ is also known as convergence in probability.
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Independence and conditioning

3.1 Product measures and Fubini theorem

In elementary geometry one learns that the area of a rectangle equals the prod-
uct of its width and height. Phrased differently: the two-dimensional measure
of the rectangle equals the product of the one dimensional measures of its sides.
Taking products of general measures to obtain measures on the product space
is a generalization of this simple idea.

Let us first define the product of two o-algebras.

Definition 3.1. Let (T}, gl) and (T, gz) be two measurable spaces. The prod-
uct o-algebra G, ® G, on T} X T, is the o-algebra generated by sets of the form
A} x A, where A; € G, fori=1,2. .

Product measures are similarly defined by requiring that the measure of a
product set is the product of measures.

Definition 3.2. Let (T}, G|, ¢#4;) and (T3, G, , 4, ) be two measure spaces. A mea-
sure p on the product o-algebra G, x G, is a product of the measures g, and
U, if

U(A; x Ay) = u(Au(4,)
forall A; € G,,i = 1,2. Inthis case (T, xT;, G, ®G,, i) is called a product space
of the measure spaces (T}, G, 41) and (T, G,, i4,). Such a product measure is
usually denoted by y; ® p,. .

The product of two measures is not always unique, but in the case of o-finite
measures this is the case.

Theorem 3.3. Assume that the measures y, and p, in are o-finite.

Then there exists a unique product measure on G, X G,,.

Proof when p, and u, are probability measures. Note that the set

is a semialgebra, meaning that P is closed under intersections, contains the
empty set, and if A € P, then the complement of A can be written as a finite
disjoint union of sets in P.

From any semialgebra P one can construct an algebra 4 by taking finite
unions of sets in P, and one can check that if 4: P — [0, 0o] is a countably ad-
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3. Independence and conditioning

ditive map, then it admits a countably additive extension to A, and hence one

can apply Carathéodory’s extension theorem (Theorem 1.35]). We leave the de-
tails to the reader, since this was also more or less the content of|

Anyway, by the above discussion and it is thus enough to
check that the map p: P — [0, co] defined by pu(A; x A,) = pu;(A;)u,(A,) is

countably additive. Assume thus that A = BxC € Piswrittenas A = |47, A,
with A, = B, x C,, € P. Then we have

Ig(x)1c(y) = Z Ilgn(x)llcn(y)

n=1

forall x € T} and y € T,. Integrating first over x and then over y and using
the monotone convergence theorem gives

U(A) =y (Buy(C) = ) i (B)py(B,) = ) u(A,),
n=1 n=1

which proves the theorem in the case of probability measures. ]

The most important result regarding integration with respect to the product
measure is that it can be computed as an iterated integral.

Theorem 3.4 (Fubini’s theorem). Let (T, G,, ;) and (T,, G,, u,) be o-finite
measure spaces. Then for any integrable f : T, xT, — Rthemap x — f(x, y) is
integrable for a.e. y € T, and the map y — f(x, y) is integrable for a.e. x € T},
the a.e. defined map x — ‘[Tz f(x, y)du,(y) is integrable w.r.t. u, and the a.e.

defined map y — IT f(x, y) du,(x) is integrable w.r.t. u,, and we have

| rdwem = [ fosydimtdm

T, xT, T, T,

=J J £, ) duy (x) dpy (7).
T, JT.

2 1

Moreover, the above identity also holds for any f > 0 (even if f is not integrable
in which case all integrals are 00).

Before going to the proof, let us see how knowing the result for probability
measures gives us the o-finite case as well.

Proof of Theorems|3.3|and 3.4 if they hold for probability measures. Let y; and
u, be two o-finite measures. Then by [Proposition 2.45|there exist probability
measures v, and v, and positive functions f, and f, so thatdy, = f;dv, and
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3. Independence and conditioning
du, = f,dv,. We may then define

(1 © )4 = [ 1,6) A LI, ©7,)(x, )
which satisfies
(U ® Uy)(BxC) = J 1z(x)1c(p) f1 (%) f,(p)dv, (x)dv,(y) = u; (B)u,(O),

so it gives a product measure which is unique by Fubini’s theo-
rem is also immediate since for any g € L' (4, ® y,) we have

[ 90 ) i) f,()d (v, ©v,)
_ [ j 90, Y) () dv, (x) fo(3) dvy ()
=4ﬁ&wwmwwm@l -

We will now begin preparing for the proof of for probability
measures and start with the following useful fact about measurable functions

on product spaces.

Jgduh®#»

Proposition 3.5. Let (T}, G,) and (T, G,) be measurable spaces and let (T, G)
be the product space. Assume that f: T; x T, — R is G-measurable. Then for a
fixed x € Ty the map y — f(x, y) is G,-measurable.

Proof. Exercise. Hint: Use the fact that every measurable f is a limit of simple
functions and deduce that it is enough to prove the theorem in the case where
f =1, for someset A € G, ® G,. Use the 7-A theorem. O]

The second ingredient we need is a Fubini’s theorem for indicator functions.

Lemma 3.6. Assume that (T}, G, uy) and (T,, G,, 4,) are probability spaces and
that A € G, ®G,. Then the map x — IT 1,(x, y)du,(y) is G, -measurable and
2

wl@uz)(A):j j L,(x, ) dity () dps, ().

1 T2

Proof. We use the 7r-A theorem. Let A € G,®G, be the family of all measurable
sets for which the claim holds. Clearly all sets of the form A; x A, with A; € G,
and A, € G, belongto A soitis enough to check that A isa A-system. If A € A,
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then

(1, ® ) (A) = 1 = 1y ® 1,)(A) = L L (1= 1, (x, 7)) sy () ity ()

| [ nate i du o,
TI TZ
where also the measurability of the map x +— JT 14 (x, y) dp,(y) is clear so

A® e A. Finally if (A,),2, are disjoint elements of 4, then by the monotone
convergence theorem

omUJa)=3 [ ] 1,6 dinodine

= L J 1y a,(%y) dpy(y) dp, (x),

1T2

where x — IT 1) a (% ¥)du,(y) is measurable because it is a sum of mea-
2 noon

surable functions, so also [ J72, A, € A. ]

Proof o It remains to prove the theorem for probability mea-

sures. Let us first assume that X is G, ® G, measurable and non-negative. Then
the sequence X, = (|2"X]/2") A n of simple functions converges to X point-
wise monotonously, and it follows from the monotone convergence theorem
that

| [ s dun, = tm [ [ X, dusydos, = i [ %, du,0) = | X 0m).

If X is in L' (4, ® u,), then the result follows by considering separately the
positive and negative parts of X. O

Let us close this section by discussing a little bit products of more than two
spaces. In general we have the following definition.

Definition 3.7. Let (T}, G,),; be a family of measurable spaces. Then the prod-
uct o-algebra (X),_; F; is the o-algebra on [, ; T; generated by the projection
maps 77, : (t;);c5 — ty (@ € I),ie.

X)F=o(m'(A) :a e LAEGY). .
iel

In the case where we have finitely many o-finite measure spaces (Tj, G, p)>
1 < k < n, one can prove that again (X);_, G, is generated by measurable rect-
angles A x---x A, and that there exists a product measure y; ®---®,, on this
o-algebra. Moreover, one can show that if one takes the products iteratively,
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then the product is associative and the order does not matter, meaning that
(1 ® phy) @ 3 = iy ® (U ® pi3) = ) ® Yy ® 3.

The most important example of a product of multiple measures is of course
the d-dimensional Lebesgue measure on R?,

Definition 3.8. Let A be the Lebesgue measure on (IR, ‘B), where B is the Borel
o-algebra on R. We then define the d-dimensional Lebesgue measure A; =
2% as the d-fold product of A with itself.

Moreover, if X is a R"”-valued random variable and f is a measurable func-
tion R” — [0, 00), then we say that X has a p.d.f. f, if X, IP has the density f
wrt. A, .

Remark. Two technical points are worth mentioning here.

« One can show that the product o-algebra B®? is also isomorphic to the
Borel o-algebra on RY.

+ Quite often when people talk about the Lebesgue measure A ; they mean
the measure which is defined on the so called Lebesgue measurable sets,
which form a o-algebra Z,; > B®?. The inclusion is strict and in fact one
can view L as the completion of B®® with respect to A;, meaning that

1, ={AUN:Ac B* NeN},
where
N:={NcR?:3N' € B N c N',A,(N') =0}

Now, when working with 7, there is the catch that unlike for the Borel
o-algebras, it is no longer true that Z; = 7,,® Z,, whend = n+m. Thus
if one wants to work with the Lebesgue measurable sets instead of Borel
sets, then the d-dimensional Lebesgue measure has to be defined as the
completion of the product of 1-dimensional measures.

The proofs of the claims in the second bullet point above are not hard but re-
quire a bit of work and are more suited to a measure theory course, so we will
skip them. The first bullet point however is easy to show and the reader is
encouraged to try and prove it. .

It is not quite as clear how to extend the definition of a product measure to
infinitely many spaces, but in the case of probability spaces this turns out to be
possible.

Theorem 3.9 (Product probability spaces). Let (©;, F;, IP;);c; be a collection of
probability spaces indexed by an arbitrary index set I. Then there exists a unique
product probability space (Q, F,P) with Q = [[..,, Q;, F = Q,; F,and P a

56



3. Independence and conditioning

probability measure that satisfies
IP(C) = 1_[ ]Pi(Ci)
i€l

forall C c Q of the form C =[]
all but finitely many is.

C; with C; € F; foralli € I and C; = Q; for

iel

Proof. Exercise. Hint: Use Carathéodory’s extension theorem. To show count-
able additivity on the semialgebra generated by the cylinder sets, try to use sim-

ilarideas asin Start with the case where the family is countable. If
2, A" = Qis a partition of  into disjoint cylinder sets but Y > P[A, ] # 1,
then by Fubini’s theorem there exists w; € ; such that we have

Y () [ [P [A7] # 1.
n=1 k=2

By induction one can find w,, ..., w,, such that

Y (@) . Ly (w,,) [] PLAR] # 1.
n=1

k=m+1

Derive a contradiction by considering w = (w,)52; € Q and the set A™ to
which it belongs. Can you extend to the case of an uncountable product? [

3.2 Independence and products

In this section we will show how the distributions of independent random vari-
ables are product measures and prove the product formula for expectation of
independent random variables.

Theorem 3.10. Suppose that X, ..., X,, are independent random variables with
distributions ,, ... , 4,,. Then the law of the random vector (X, ..., X,,) is given

by ph ® -+ ® .
Proof. Let u be the law of the random vector (X, ..., X,,). Then by definition
for Borel sets A, ..., A, we have
plA; x---xA,) =P[(X;,....,X,) €A, x---xA,]
=P[X, €A,...,X,€A,]
=P[X, €A,]...P[X, € A,]
= (U ® U )(A X xXA).

Since the rectangles A; x --- x A, form a 7-system that generates the Borel
o-algebra on R", we see that 4 and the product measure are equal. ]
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As a corollary we have the following.

Proposition 3.11. Assume that X,, ..., X, are random variables with densi-
ties f,..., f,, w.r.t. the Lebesgue measure. Then X, ..., X, are independent
if and only if the random vector (X, ..., X,,) has the density f(xi,...,x,) =
f1(x;) -+ f,(x,) w.r.t. the Lebesgue measure on R".

Proof. Exercise. ]

The main result concerning the expectation of product of two independent
random variables is now easy to derive.

Theorem 3.12. Assume that X and Y are independent random variables and
that either X,Y > 0 or X,Y € L'. Then

E[XY] = E[X]E[Y].

Proof. If X and Y are non-negative, we have by the change-of-variables for-
mula and Fubini’s theorem that

E[XY] = “ xyd(Y,P)(y)d(X,P)(x) = J xd(X,P) J yd(Y,P) = E[X]E[Y].

For integrable X and Y we may first apply the theorem to |X| and |Y]| (note
that trivially o(|X]) ¢ o(X), so o(|X]) and o(|Y]|) are independent), and get
that E[|XY|] = E[|X|]E[|Y]] < co. Hence XY € L', and we may again use the
change-of-variables formula and Fubini’s theorem. O]

It is important to note that having E[XY] = E[X]E[Y] does not imply in-
dependence of X and Y. Random variables that satisfy the condition are called
uncorrelated.

Exercise 3.13. Give an example of two random variables X and Y that are un-
correlated but not independent. .

The above theorem admits various generalizations. First of all a similar re-
sult holds also for n independent random variables X, ... , X,, thatare either all
non-negative or all integrable, in which case E[X, --- X, ] = E[X,] --- E[X,,].
The proof is essentially the same as the case of two random variables.

A special case of the above is where X = F (Y ,,...,Yy,, ) for some inde-
pendent random vectors Y, : 2 — R™* and measurable functions F, : R™ —
R. For checking that random vectors are independent the following “grouping
lemma” is often useful.

Lemma 3.14. Assume that ‘Fi j, 1 < k < n, 1 < j < my, are independent
o-algebras. Then the o-algebras F, = U(U;-rl‘l ;) are independent.

As a corollary we have the following.
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Corollary 3.15. Suppose that X ; (1 < k < n, 1 < j < my, m > 1) are
independent random variables. Then the random vectors (X1, ..., Xj ) 1 <
k < n, are independent.

Proof. Let Fy ; = 0(Xj ;). Then the random vector Yy = (Xi 1, ..., Xy, ) is
(7(U;-n:"1 Fr. j)—measurable since Yy (A X +++ X Amk) = ﬂ;i"l X,;;(Aj) is mea-
surable for all A x --- x A, € B*" and such rectangles generate the whole
product o-algebra. The claim thus follows from the grouping lemma. O]

The proof of the grouping lemma will be based on the following useful result
which says that if 7-systems are independent, then the o-algebras generated by
them are also independent.

Lemma 3.16. Let 4, ..., A, be independent m-systems, meaning that for all
A e A, U{Q}, 1 <k <n, wehave

P[A, NN A, =] [PlA]
k=1

Then o(A,), ...,0(A,) are independent.

Proof. Consider the measurable space (", G), where G := 0(A,)®---®07(A4,,).
On P®" there is of course the product measure P®" which satisfies

Po'[A) x - x A,] = [ [ P[A;]
k=1

forall Ay € 0(A;), 1 < k < n. On the other hand we may define a map v on
the semialgebra formed by the product sets A; x --- x A, by setting

V(A X xA,) =P[A, N--NA,L

Note that v is countably additive since if A; x --- x A, = [#02, By; X --- X By,
then A, n---NA, =2 (B, N+~ NBy,). Hence v extends to a measure on
G, but since v agrees with the product measure on the 77-system consisting of
sets of the form A; x --- x A, with A, € A, U{Q}, 1 < k < n, which generates
the o-algebra G, we see that the extension of v equals the product measure and
in particular

PlA, N NA]=vA xxA)=P"[A x xA]=]]P[A]
k=1

for all A, € o(A;), 1 < k < n, which proves that the o-algebras o(A;) are
independent. U

Let us next prove the grouping lemma.
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Proof of[Lemma 3.14} Let let P, be the 7-system formed by all the sets of the
form Ay, N .- N Ay, with Ay ; € F ;. Then the mr-systems P are indepen-

dent and hence also the o-algebras o(P;) = G(U;'Z‘I Fy. j) are independent by
Lemma 3.16 u

also has the following useful corollary.

Corollary 3.17. Random variables X, ..., X,, are independent if and only if

n —r"n
forallt,,...,t, e R

Proof. Exercise. O]

3.3 Conditional expectation

Our last topic in this chapter will be conditional expectation. Conditional ex-
pectation E[X]|G] can be thought of as in some sense the best approximation
of a random variable X given the information encoded by a o-algebra G.

Definition 3.18. Let (2, F, IP) be a probability space, X : 2 — R an integrable
random variable and G ¢ F a o-algebra. The conditional expectation E[X|G]
of X with respect to G is the almost surely unique G-measurable random vari-
able which satisfies

E[E[X|G]1,] = E[XT,] (31)

forall A € G. .

Before showing that the definition makes sense, i.e. that conditional expec-
tation exists and is unique, let us try to gain a bit of intuition. It is quite natural
to require that E[X|G] is G-measurable if we want to take the best approxima-
tion of X given the information in G, but it is perhaps less clear how to think
about the defining condition (3.1). It might be useful to start with the following
example.

Example 3.19. Let E,, ..., E, be a partition of Q with P[E; ] > 0 for all k, and
let G := 0(E,, ..., E,). Now if X is a random variable, we have by that

E[E[X|G]1g, | = E[X1g,].

Notice that since [E[X|G] is G-measurable, it must be constant on each E; -
let us call these constants a;.. Thus from above we get the equation a; P[E; ] =
E[X1 E, ], or

E[X1]

= TPIE]
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3. Independence and conditioning

In other words, E[X|G](w) = XﬂEk forall w € E, i.e. E[X]|G] is obtained by
replacing X by its averages over each of the sets E;. .

In the above example we see that taking the conditional expectation is basi-
cally just averaging out the extra randomness in order to form a guess based on
the information we have. The central property of taking averages is that if you
first average over some atomic sets E; like in the example to obtain E[X]|G],
then the average of E[X|G] itself over unions such as E; U E, will be the same
as the average of the original random variable X over the same set.

Now, in general G might not be given by such a simple partition as in the
example, but we can still ask is there a random variable E[X|G] which is G-
measurable and preserves the averages over all sets in G. This is exactly the
content of the condition (3.1).

Let us next try to show that the definition indeed makes sense.

Theorem 3.20. For any X € L' and any o-algebra G C F the conditional expec-
tation E[X|G] exists and is unique a.s.

Moreover, we have the following extension of (3.1): IfY is G-measurable, then
XY e L! if and only if E[X|G]Y € L', in which case

E[X|G]Y] = E[XY].

Proof. We will use the Radon-Nikodym theorem. Assume first that X is non-
negative and consider the measure v(A) = E[X1,] on G. Clearly v < PP, and

thus there exists a unique Radon-Nikodym derivative E[X|G] = dv  such that

E[X1,] = v(A) = E[E[X|G]1,],

which is exactly what we wanted. Moreover by wehaveY € L'(v)
if and only if XY € L', in which case E[X|G]Y € L' and

E[XY] = Jde = E[E[X]|G]Y]

For general X € L', we may write X = X, — X_ as the difference of its
positive and negative parts and define

E[X|G] = E[X,|G] - E[X_|gG].

By linearity we again have E[E[X|G]Y] = E[XY] for all G-measurable Y with
XY e L. O

The first and most fundamental property of conditional expectation is that
it is a linear and continuous operator L' — L.
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3. Independence and conditioning

Proposition 3.21. Let G C F be a o-algebra. Then the map L' — L' given by
X — E[X|G] is linear and continuous.

Proof. To see that the map is linear it is enough to show that
E[cX +YI|G] = cE[X|G] + E[Y]|G]

where ¢ € Rand X,Y € L'. This is true, since for any A € G we have by the
linearity of ordinary expectation that

E[(cE[X|G] + E[Y|G]1,4] = cE[E[X|G]1,] + E[E[Y|G]1,]
= cE[X1,] + B[Y1,] = E[(cX + Y)1,].

For continuity it is enough to show boundedness. This follows easily from
the extended formula in[Theorem 3.20} since

IE[XIG]I, = E[IE[X|G]] = E[E[X]|G] sgn(E[X|G])]
= E[X sgn(E[X|G])] < E[|X]] = [ X o

Proposition 3.22. Let G ¢ F be a o-algebra and let X and Y be two random
variables such that XY and X are both integrable. Then if Y is G-measurable, we
have

E[XY|G] = YE[X]|G].

Proof. Since for any A € G we have XY1, € L', we have by that
E[E[X|G]Y1,] = E[XY1,],

which implies that E[XY|G] = YE[X|G]. O

Computing conditional expectations can often be challenging in practice,
but in the case where we have two random variables with a joint p.d.f. and
condition one w.r.t. the other we have the following result. Note that by E[X]|Y]
we mean E[X|o(Y)].

Proposition 3.23. Let X,Y € L' be random variables with the joint density
f(x,y). Then for any measurable : R — R such that (X) € L' we have
E[p(X)|Y] = g(Y), where

gly) = [ feeyydx 2 if J fx,y)dx +0 .
0, otherwise

Proof. The random variable g(Y) is clearly o(Y)-measurable. To check (3.1)),
we note that if A € o(Y), then A = Y~1(B) for some Borel set B ¢ R and by
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the change-of-variables formula and Fubini’s theorem we have

E[g(Y)1,]

| IS5 y) dxdy

( | o) f(w, y) du
=], ﬂ{jf(u,y)du>0}()’)113()’) RJIR oy i f(x, y)dxdy

= Jee n{j f(u,y)du>0}(y)ﬂB(y)(P(u)f(u’ y)dudy

= | #0107 ) dudy = Elp(O1,

Note that one can justify the use of Fubini’s theorem by doing first a similar
computation as above but for E[|g(Y)|] to show that g(Y) € L', we leave the
details to the reader. l

The following proposition shows that if we condition twice with respect to
two o-algebras H and G, then the result will always correspond to conditioning
with respect to the o-algebra which contains less information. This is some-
times called the tower property of conditional expectation.

Proposition 3.24. Let { ¢ G ¢ F and assume that X € L. Then

E[E[X|#]G] = E[E[X|G]|H] = E[X|H].
Proof. Exercise. H

Independence and conditioning also works as one would expect: If there is
no information, the best guess is just the expectation.

Proposition 3.25. Let G ¢ T and assume that X € L' is independent of G. Then
E[X|G] = E[X].

Proof. Exercise. ]

In particular the above proposition shows that E[X|{J, QO}] = E[X], so the
usual expectation can be viewed as a special case of conditional expectation
where we condition w.r.t. the trivial o-algebra.

Conditional probabilities can also be defined via conditional expectation.

Definition 3.26. The conditional probability IP[A|G] of an event A given a
o-algebra G is defined by setting

P[A[G] = E[141G]. .

Here are some more properties of conditional expectation. The proofs are
mostly trivial and left as an exercise.
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3. Independence and conditioning

Proposition 3.27. The conditional expectation satisfies the following (X,Y are
random variables, G, H C F are o-algebras and we assume all the conditional
expectations exist. All claims hold almost surely.):

» We have E[E[X]|G]] = E[X].

o If X is G-measurable then E[X|G] = X.

If X is independent of (0(Y) U G), then E[XY|G] = E[X]E[Y]|G].

If X > 0 then E[X|G] > 0.
o If X >Y then E[X|G] = E[Y]|G].
« IfX, — XinL', then E[X,|G] — E[X|G] in L.
Proof. Exercise. ]

As conditional expectations are defined only up to almost sure equivalence,
it is not meaningful talk about pointwise convergence of E[X,,|G] to E[X|G].
Almost sure convergence is however still well defined and in particular mono-
tone limits work nicely.

Proposition 3.28. Let X, € L' be a.s. non-negative and increasing and suppose
that the a.s. limit X = lim X, is also integrable. Then

E[X,|G] = E[X|G].

Proof. By monotonicity the sequence E[X,,|G] is almost surely increasing and
hence converges almost surely to some non-negative Y € L°. Then by the
monotone convergence theorem we have for any A € G that

E[Y1,] = lim E[E[X,|G]1,] = lim E[X,1,] = E[X1,],

n—-oo
showing that Y = E[X]|G] almost surely. l
Finally let us consider conditional distributions.

Definition 3.29. Let B denote the Borel o-algebra on R. If X is a random
variable and G ¢ Fis a o-algebra, we say thatamap y: BxQ — [0,1] isa
regular conditional distribution for X given G, if the following hold:

o Almost surely for a fixed w € Q the map A — (A, w) is a probability
measure on R.

o For a fixed A € B the map w — u(A,w) is measurable and we have
(A, w) = P[X € A|G](w) a.s. .
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3. Independence and conditioning

Conditional distributions are nice because they let us compute E[F(X)|G]
for many different F simultaneously.

Proposition 3.30. Let X be a random variable and G C F be a o-algebra, and
denote by p the r.c.d. for X given G. Then for any measurable ¢: R — R such
that p(X) € L' we almost surely have

El(X)|G](w) = j o(x) du(x, ).

Proof. We first note that in the case ¢ = 1 for some E € B we have

| 90) dutx. ) = [ 15 dutxw) = u(E.0) = PLX € EIG] = Elp(01G)

by definition. By linearity we see that the claim holds for simple ¢ and by
approximation and monotone convergence one gets the claim for non-negative
¢ and the final case ¢(X) € L' follows by considering ¢, and ¢_. O]

Let us next show that r.c.d.s exist.

Theorem 3.31. Let X and G be as in|Definition 3.29| Then there exists a regular

conditional distribution y for X given G.

Proof. For each q € Q let w — F,(q, w) be a fixed pointwise defined repre-
sentative of P[X < g|G]. We next claim that there exists an event Q of full
probability such that the following hold for all w € Q:

» q — F,(q, w) is increasing

o lim Fy(qw) = 1andlim__,_, Fy(g,w) =0

q—00
. limq,lq F(q',w) = F(g,w)

The first bullet point follows since by the monotonicity of conditional expec-
tation we have almost surely Fy(g,w) < F,(q',w) whenever g < g’ and to
ensure that F, is increasing it is enough to consider the intersection of all
such events for a countable number of pairs (g,q'). The second point follows
from the monotonicity we just showed and the fact that by Proposition
P[X <n|G] —» 1as. asn — ooand P[X < n|G] — 0as. asn — —oo. The
third point is similar since a.s. lim,_, P[X < g +27"|G] = P[X < q|G].
Let us next define the map F: R x 2 — R by setting

F(x,w) = inf{F,(q,w) : Q 3 g > x}

when w € Qand just defineitase.g. F(x, ) = 1) (x) forall w € Q\Q. Now
itis easy to check that for fixed w the map x — F(x, w) satisfies the assumptions
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of [Theorem 1.49, and hence it is the c.d.f. of some random variable, and in

particular there exists a map p: BxQ — [0, 1] such that for every fixed w € Q
the map A — u(A, w) is a probability measure which satisfies

p((=00, x], w) = F(x, w).

In order to y be a r.c.d. it remains to check that for fixed A € B the map
w — U(A, w)isarandom variable which agrees with P[X € A|G] almost surely.
Let A be the set of all A for which the claim holds. Then 4 is a A-system since
if A € A, wehave u(A°,w) = 1-u(A,w) = 1-P[X € A|G](w) = P[X € A%|G]
a.s.and if (4,));2, is a disjoint sequence of elements of 4, we have

ulH A, w0) = uA,,w) =) PX € A,|Glw) = P[X € |[HA,]w)
n=1 n=1 n=1

n=1

almost surely. Moreover A contains the -system consisting of intervals of the
form (—00, q] for some g € Q, and since these intervals generate ‘B, we have
by the 7-A-theorem that 4 = ‘B. O

Remark. One can also consider general T-valued random variables, but in that
case order to have the existence of r.c.d.s one needs to impose some extra con-
ditions on T. In particular the claim holds when T is a standard Borel space,
which means that there exists a measurable bijection ¢ : T — R such that also
¢! is measurable. As one would expect, the r.c.d. in this case is then a map
p: TxQ—[0,1].

One can show that Borel subsets of complete separable metric spaces are
standard Borel spaces when endowed with the o-algebra generated by the Borel
sets. In particular R are standard Borel spaces and thus natural analogues of
[Theorem 3.31|and [Proposition 3.30/hold for vector-valued random variables
X, so that for example the formula

E[o(X, Y)|G](w) = jso(x, Y)du(x, y,0)

holds almost surely whenever ¢(X,Y) € L'. We skip the proofs even though
they are not difficult - interested readers can try to prove them by themselves
or see e.g. [1, Theorem 4.1.17]. .

Using r.c.d.s it is easy to generalize many properties of the usual expectation.

Proposition 3.32. The conditional expectation satisfies:

o Jensens inequality: E[¢p(X)|G] = @(E[X]|G]) a.s. for convex ¢.
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3. Independence and conditioning
o Holder’s inequality: For p,q > 1 with % + 611 =1,
E[IXY1IG] < (E[IXIPIGH VP (E[lY|1|G])"/4

o Minkowski’s inequality: For p > 1,

(E[IX +Y[PIgDYP < (E[IXIPIGD? + (E[IY|?|G])"/?

Proof. Exercise. O

Let us end this section by giving a geometrical interpretation to conditional
expectation. This is extra material and we won't use it later, but it is also a good
excuse to talk a bit more about I* and in general it is good to know these things.

One can show that X — [E[X]G] is a continuous operator on I? (exercise).
The space I? on the other hand is special because it is a Hilbert space, i.e. its
norm is given by the inner product

(X,Y)p = E[XY].

Indeed, if X,Y € I?, then by Holder’s inequality one checks that XY € L', so
the above definition makes sense, and one can also easily check that (-, -);> has
all the properties of an inner product.

Given an inner product one can say that X and Y are orthogonal if (X, Y),> =
E[XY] = 0. Given a subspace V C I? one can define its orthocomplement
Vi = {X € I’ : E[XY] = OforallY € V}. Then it is a theorem that any
X € I* can be written in a unique way in the form X = X;, + X,., where
Xy € Vand Xy € V*. One can also show that the map X +— Xj, is linear
and this is called the orthogonal projection of X onto V.

Now consider the closed subspace

V = I*(G) = {X € [* : X is G-measurable}.

Conditional expectation is nothing but the orthogonal projection onto the sub-
space L*(G).

Another way to express the orthogonal projection of X onto I*(G) is to say
that it is the random variable Y € I (G) which minimizes the distance to X in
I?, or in other words minimizes the variance E[|X — Y|*]. We leave it as an
exercise to try to show this directly without the above theory.
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4.1 Estimating the distribution of random variables

A task that one often runs into both in theoretical settings as well as in appli-
cations is to estimate the probability that a given random variable X lies in a
given set A C R.

One common task is to get upper bounds for the tail probability P[X > A]
of X being large. A common method to do this is to notice the following: If
¢: R — [0, 00) is an increasing function with ¢(A) > 0, then

@A)

Inequalities resulting from various choices of ¢ have been given various names:

_ Elp0)]

PLX > A] = P[p(X) = p(1)] = P| R ey

]=]E[]1

« Choosing ¢(x) = x1 g ) (x) we get Markov’s inequality

P[|X]| > A] < w.

« Choosing ¢(x) = x> 1, (x) we get Chebyshev’s inequality

E[X?]

P[|X| > A] < P

« Choosing ¢(x) = exp(tx) for some t > 0 we get the Chernoff bound

Elexp(tX)]

PIX =A< exp(tA)

Apart from tail probabilities another related problem is to show that the dis-
tribution is well-concentrated around its mean. Here we will mention the fol-
lowing Paley-Zygmund inequality which can be used to show that with a rea-
sonable probability a non-negative random variable does not become too small
compared to its mean.

Lemma 4.1. Let X € I be a non-negative random variable. Then for any 0 €
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4, Random series and the law of large numbers

[0, 1] we have
E[X]?

_o\2
P[X > 0E[X]] >(1-0) E(X2]’

Proof. We have by the Cauchy-Schwarz inequality (Holder’s inequality with
p =q=2)that

from which the claim follows by subtracting 0E[X] on both sides, dividing by
VE[X?] and squaring. O

4.2 Strong law of large numbers

This whole section will be devoted to the proof of the following strong law of
large numbers.

Theorem 4.2. Let (X,,);2, be a sequence of independent and identically dis-
tributed (i.i.d.) random variables in L'. Then

almost surely and in L'.

The proof will be incremental, going from weaker results towards the final
one. There will be several clever tricks along the way, but it will also allow
us to return to all the theory we have built up so far. Let us fix the notation
S, = 2r_; X. Since we will be interested in the difference between n™'S, and
E[X,], it is also useful to define

A, =n'S, ~E[X,] = % Y (X, - E[X,)),

n=1

where the sum on the right is now over independent random variables with
zero expectation. Our goal is equivalent to showing that A, — 0 a.s. and in
L.

Case of [*-random variables: Note that if X, € I?, then for any ¢ > 0 and
n > 1 we have

ElIA, ) = n2E]| 3 (X, - EIX))| | = ElIX, - EIX,]P
k=1

and as the right hand side tends to 0 we get that n™! Y'7_, X, — E[X,] in I*.
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I'-convergence: Our next step will be to remove the requirement that X, € I
by a truncation argument. Let us fix A > 0 and split each X, as the sum X, =
Xk H{lelﬁl} + Xk H{le|>A}. We will also write

(oe)
AN = Z Xilix, < — EIX 1 x )

and

1 [0e]
AGY - > (XL on — LX)
n=1

sothat A, = ASY + ACY We have by the triangle inequality

EllA,1] < BIAFV() + BIATV ) < ATV |+ 2B0X, 11y, )

Since Xj 1y x, 1<y € 12, the I*-result we proved implies that the first term tends
to 0 as n — 00. On the other hand the second term tends to 0 as A — co. As
A was arbitrary, we see that A, — 0in L' asn — 0o. We have now proven
the L' -part of and this also implies convergence in probability —
a result which is called the weak law of large numbers.

Almost sure convergence along geometric subsequences: Recall that from
the convergence in probability which we have now proven it follows that there
exists some subsequence (1;);2; such that n,;lSnk — E[X,] almost surely. We
would now like to strengthen this claim to say that this in fact holds for all
subsequences of the form n; = L7 | with r > 1. By Borel-Cantelli lemma it is
enough to show that for all ¢ > 0 we have

M8

P[4, | > €] < co.

T
)

Indeed, if this holds, then if we let EJ- be the event that there exists a random
kj such that IAnkI < jlforallk > kj, we have IP[E]-] = 1, and the almost

sure convergence along the subsequence ;. will follow by considering the full
probability event ﬂ‘]’i’l E
Since IAnkI > ¢ can only hold if at least one of |A(ni”k)| > ¢g/2or |A51>k”k)| > ¢/2
holds, we have
P[4, | > ] < P[|AT™| > /2] + P[|AT"™| > ¢/2].

For the first term we notice that

AE[X, 1, s
n €

4
P[IAS™)] > &/2] < 8—2]E[|A(fk”k)|2] <
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We then have

an (X1 P x, 1<ny] = EIX, P Z ]I{erJ>|X1|}]

< E[IX, Z r ] < E[IXy]].
k=log(1X, )/ log(r)]

For the second term we note that for large enough k we have [E[ X 1 X, |>nk}] | <
/2, so in order to have

1 &
AR = |23 X1y~ ELXy 15, o ]| > /2
k j=1

we actually need to have IXJ-I > ny, for at least one j € {1,...,n;}. Thus
P[IAG")] > /2] < mP[IX,] > ny],

but then

log(1X,1)/ log(r)

[o0] (o]
Y mPX,|>m] =E[Y mlx ., ] SEL Y rFI<EIX]L
k=1 k=1 k=1

Almost sure convergence along the original sequence: The final trick will
be to notice that by linearity it is enough to prove the claim in the case where
X = 0. Under this assumption we can then use the fact that

—ZX——ZX—( 1)—ZX—— Z 1)—ZX
nk]l k]l ]m+1 nk]l

for n;, > mand

—ZX——ZX—( 1)—ZX +— Z Xz( 1)—ZX
nk]l ]nk+1 nk]l

for n, < m. In the first case choosing n;, = r*

that%—lSr—landthus

Z Zk: X;+0(r-1),

> m as small as possible we see

1
m

asr > 1isarbitrary, we get thatlimsup, % ;.”:1 X; < E[X,] almost surely.

Similarly using the other inequality one obtains that liminf,, ,_ ~ -~ ;.”:1 X; >
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4, Random series and the law of large numbers
E[X, ], which finishes the proof.

4.3 Kolmogorov’s zero—one law

Kolmogorov’s 0-1 law is a precise statement which roughly says the following:
If whether an event happens can be deduced from vanishing information, then
this event either happens almost surely or almost never.

The idea of “vanishing information” in this case is captured by the concept
of tail o-algebra.

Definition 4.3. Let (F,);2, be a sequence of independent o-algebras. Then
the tail o-algebra G generated by (F),);2, is the o-algebra defined by

6=l

n=1 k=

[oe]

nTk). .

A common situation is the one where we have a sequence (X,));,2; of inde-
pendent random variables and F,, = 0(X,,). In this case an event E belongs to
the tail o-algebra G if it does not depend on the first X, ..., X, foranyn > 1.
A typical example would be the event E = {lim,,_,  X,, exists}. The following
Kolmogorov’s 0-1 law then says that for any E € G we must have IP[E] € {0, 1}.

Theorem 4.4. Let G be a tail 0-algebra according to[Definition 4.3|and let E € G.
Then P[E] € {0, 1}.

Proof. Let A € G. We will be done if we can show that A is independent of
itself, because in that case P[A] = P[A N A] = P[A]?, which is only possible if
IP[A] is either 0 or 1.

Notice that by definition we have A € 0( U2, 'T-k) for all n > 1. Consider
the o-algebra 0( Z: 'Fk). It is generated by the 7r-system consisting of all sets

oftheform A, N---NA,_,,where A, € F. Similarly 0( U, Tk> is generated
by the 71-system consisting of all sets of the form (2 A, with A, € F; and
A # Q for only finitely many k. But now it is clear that these two 77-systems
are independent, so the same holds for the two o-algebras. Thus in particular

A is independent of 0( Z: Tk) for all n.
But now one can use a similar argument to show that (A) is actually inde-
pendent of a( U, Tk). Indeed, the latter is generated by a 7-system consist-

ing of all sets of the form (72, A, with A; € F; and A, # Q for only finitely
many k. Since A is independent of this 7z-system, it is also independent of the
generated o-algebra.
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4, Random series and the law of large numbers

Finally note that G 0( Ui, Tk), so A is both measurable and indepen-
dent w.r.t. the o-algebra 0( Ui, Tk>. O

There are many important tail events, and the following exercise presents
some of them.

Exercise 4.5. Let (X,,);,2, be independent random variables. Show that the
following are tail events and thus have either probability 0 or 1:

(a) {lim,_,., X, exists}

(b) {lim,_,, >y ; X exists}
(o) {lim,_,, % Yoy X exists} .

Kolmogorov’s 0-1 law is indeed quite strong when applicable, but luckily it
does not tell us which of the two possibilities happens for a given tail event, so
we still have some interesting math to do. For example, we saw in the proof of
the law of large numbers that it still requires quite a bit of work to show that
if X, are identically distributed then the probability of the event in part (c) of
the above exercise is indeed 1 and not 0.

4.4 Kolmogorov's three series theorem

In this section we will prove Kolmogorov’s three series theorem, which pro-
vides a sharp answer to the following question: Let (X,,);2, be a sequence of
independent random variables. When does ) 2, X, converge almost surely?

Theorem 4.6. Let (X,,);2, be a sequence of independent random variables, K >
0 and define Y, = X, 1yx |k for alln > 1. Then 312 X, converges almost
surely if and only if the following three deterministic series converge

Y PlIX,|>K], Y E[Y,] and ) E[Y, - E[Y,]].
n=1 n=1

n=1

The proof of will be based on the following lemma, which

shows that for random series consisting of independent terms convergence in
probability is equivalent with convergence almost surely.

Lemma 4.7. Let (X,,)5,2, be a sequence of independent random variables and
assume that the random variables S, == Y} | X, converge in probability. Then
the series ). >, X, converges almost surely.

Proof. Exercise. O

We will also make use of the following result.
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4, Random series and the law of large numbers

Lemma 4.8. Let n > 1 and let (X;.);_, be independent random variables such
that for all 1 < k < n we have E[X;] = 0 and |X;.| < 1 almost surely. Assume
further that

n

Y E[X 21

k=1
Then there exists a universal constant € > 0 (not depending on n or the particular
random variables (X.)i_,) such that

1P[|k2xk| >e|ze

Proof. Exercise. O
Proof Let us first show that if the three series converge, then
| X, converges almost surely. The first condition Z P[|X,| > K] < 00

1mp11es together with the Borel-Cantelli lemma that almost surely X, =Y, for
n large enough and hence it is sufficient to show that } °> 'Y, converges almost
surely. Let us write S, = } /| Y. For n > m we have

EIIS, —5,,] = E| y v] - Y EvY]

k=m+1 jrk=m+1
n
= Y E[Y]E[Y]+ Z (E[Y2] - E[Y,]?)
Jok=m+1 k=m+1
n 2 n
=| ¥ Em + Y E0Y - EXIPL
k=m+1 k=m+1

Since by assumption the series Y t°, E[Y, ] and Y'3° E[|Y, — E[Y;]|*] converge,
we see that the right hand side tends to 0 as n,7m — o0, which shows that S, is
Cauchy in I*. Thus S,, converges in probability and by it converges
almost surely.

Let us then switch to proving the other direction and assume that } 2, X,
converges almost surely and try to show that the three deterministic series con-
verge. The second Borel-Cantelli lemma implies that if we had Y 2, P[| X, | >
K] = 0o, then a.s. we have |X,,| > K for infinitely many #, but this is not possi-
ble since ), X, converges almost surely. Thus the first series ) 2 P[|X, | >

K] is finite.

Let us next note that if we can show that the third series } °° | E[|Y, ~E[Y,,] 1]
converges almost surely, then we see that the sequence U, = Y, —E[Y, ] satisfies
the assumptions in the first part of the proof (with K replaced by 2K) and hence
Yo, U, converges almost surely. As ) *2 'Y, converges almost surely, this im-
plies that also ) 2 E[Y, ] converges. Thus it remains to show the convergence
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4, Random series and the law of large numbers

of the third series.

We can do one more reduction by noting that it is enough to prove the
convergence under the extra assumption that E[Y,] = 0. Indeed, if we let
Z,=Y,-Y], whereY, isan independent copy of Y, for all n, then E[Z,] = 0
foralln > 1and Y% Z, converges almost surely. Moreover Y % E[|Z,|*] =
22 E[lY, - E[Y,]]%], so if we can show the claim for Z,, it will also follow
forY,.

Assume thus that E[Y,] = 0 and letagain S, = )/ | Y}, S, = 0. We have
|Y,| < K almost surely and by scaling we may without loss of generality assume
that K = 1. Suppose, to obtain a contradiction, that } >, E[|Y,]*] = co. By us-
ing induction and[Lemma 4.8|we see that there exists ¢ > 0 and a deterministic
sequence n; < n, < ... such that

IP[|Snk+1 —Snkl >el>¢

for all k. By the second Borel-Cantelli lemma one then has that [S,, -S,, | > ¢
happens infinitely often, which contradicts the convergence of S,,. ]
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Convergence in law and the central limit
theorem

5.1 Convergence in law

This final chapter is concerned on the convergence of random variables in law.
This is a very different and much less probabilistic type of convergence than
what we have discussed earlier, since it only looks at what happens with the
laws y,, = X,,,IP of the random variables. Thus one can make sense of this
type of convergence even if X,, are defined on different probability spaces.

Definition 5.1. Let (y4,,);2, be a sequence of probability measures on (R, B),
where B is the Borel o-algebra. We say that y,, converge weakly to a measure
u, if for every bounded continuous function i: R — R we have

tim | ) dy () = | B0 duo),

If (X,,);2; is a sequence of random variables, X is another random variable,
and X, , P converge weakly to X, IP, then we say that X, converge in law (or

d
distribution) to X and write X,, — X. By the change-of-variables formula
this is equivalent to requiring that

E[h(X,)] — E[h(X)]

for every bounded continuous i: R — R. .

Remark. We may define weak convergence and convergence in law in an anal-
ogous way for measures on RY just by requiring that the convergence holds
against continuous and bounded functions #: R? — R. .

Let us immediately note the following.

P d
Proposition 5.2. If X, — X then X, — X.

Proof. Let h: R — R be bounded and continuous. By |Proposition 2.16| we

have h(X,,) E h(X), and since h(X,,) are bounded we get by the dominated
convergence theorem E[Ah(X,)] — E[h(X)]. [

The above definition is the “elegant” one, since it also works analogously
for random variables taking values in any metric space. In practice one often
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5. Convergence in law and the central limit theorem

however likes to study distributions via their c.d.f.s, so let us next prove the
following characterization of convergence in law.

Theorem 5.3. Let (X,,),2, be a sequence of random variables and X another

d
random variable and let Fy and F be their respective c.d.f.s. Then X,, — X if
and only if Fy (x) — F(x) for all x € R such that F is continuous at x.

Before proving the above theorem, let us note that F being continuous at x is
essential. Consider the deterministic random variables X, = 1/n and X = 0.
Then the law of X, is a Dirac delta measure at 1/n, while the law of X is a
Dirac delta measure at 0. Clearly for any continuous and bounded f we have
f(1/n) — £(0),s0 X, i X. However, Fy, (0) = 0 for all n while Fy(0) = 1 so
Fyx (0)Fx(0). The failure does not however contradict the theorem because
FXn(x) = H[O,OO)(x) is not continuous at 0.

d
Proof of[Theorem 5.3} Assume first that X,, — X and that x is a point of con-

tinuity of F. Fix ¢ > 0 and consider the continuous piecewise linear function
h(t) which is 1 for t < x, 0 for t > x + € and decreases linearly from 1 to 0

between x and x + e. Since X, i X, we have E[h(X,)] — E[h(X)]. Now
Fx (x) < E[h(X,,)] and E[h(X)] < F(x + ¢), and hence

lim sup Fx (x) < F(x + ¢),

n—,o00

and by letting ¢ — 0 and using the continuity of F at x we see that

lim sup Fx (x) < F(x).

n—.00

On the other hand if we let g(¢) be the continuous piecewise linear function
whichis 1 fort < x —¢,0fort > x and decreases linearly from 1 to 0 between
x — € and x, then Fx (x) > E[g(X,,)] and E[g(X)] > F(x — €), and hence

lim ianXn (x) > F(x —¢),
and by letting ¢ — 0 and using the continuity of F at x we see that
liminf Fy (x) > F(x).
n—:00 "
Thus lim,,_, FXn (x) = F(x) as wanted.

The opposite direction follows from the next representation theorem and
[Proposition 5.2} ]

Theorem 5.4 (Skorokhod’s representation theorem). Let (F,);,2, and F bec.d.f.s
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5. Convergence in law and the central limit theorem

such that
F,(x) — F(x)

at every continuity point x of F. Then there exists a probability space (Q, F, P)
and random variables (X,,),2, and X on Q such that Fx = F, foralln > 1,
Fy=Fand X, 5 X.

Proof. Let (Q, F, IP) be a probability space on which a uniform random vari-
able U taking values on (0, 1) has been defined. Recall the proof of
where we defined a random variable X with c.d.f. F by letting X =

G(U), where
G(t) == inf{x € R : F(x) > t}.

Define X, similarly by letting X,, = G,,(U) (with always the same U), where
G,(t) =inf{x e R : F (x) > t}.

We claim that X, 2 X, Let Dy and D be the sets of disconcinuity points
of F and G respectively. Since F and G are increasing, both Dy and Dy; are
countable (exercise). Thus U is a continuity point of G almost surely. Since the
complement of Dy, is dense, for any such U ¢ D, and for any € > 0 there exists
numbers x;, x, ¢ Dp such that

x, <GU)<x, and |x;—x,|<e.
This implies that
F(x,) <U < F(x,),

since U = F(x,) is ruled out by the fact that by G(U) < x, there exists x’ < x,
s.t. F(x') > U, which means that lim,_ ;- G(u) < x' < x, < lim,,_;+ G(u),
contradicting the fact that by the continuity of G at U we have

Jip 60 = lip, GO

On the other hand since we havelim,_,  F,(x,) = F(x;) andlim,_, F,(x,) =
F(x,), we see that for large enough n

F,(x;) <U < F,(x,),

which implies that
x; <G,U) < x,,

so that | X, — X| = |G, (U) - G(U)| < e. ]

Remark. Skorokhod’s representation theorem also holds for random variables
taking values in any separable metric space but the proof is a bit more compli-
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5. Convergence in law and the central limit theorem

cated, see e.g. [2, Theorem 4.30]. In particular for R? we have the following: If
(1,)22, is a sequence of probability measures on R? that converges weakly to
a probability measure y, then there exists a probability space (2, F,P) and

d
R%-valued random variables (X,)%, and X on Q such that X, — X and
(X,).P=p,and X, P = p. .
As a corollary we get the following.

Theorem 5.5. Assume that (X,,),2, is a sequence of random variables that con-

verges in law to a random variable X. Then for any continuous g: R — R the
random variables g(X,,) converge in law to g(X).

Proof. Skorokhod’s representation theorem allows us to assume that in fact
X, — X almost surely, in which case g(X,) — ¢g(X) almost surely, which

d
again implies g(X,,) — g(X). ]

Let us next prove the so called Portmanteau theorem which gives us equiv-
alent characterisations of convergence in law.

Definition 5.6. We say that a Borel measurable set A C R is a continuity set of
arandom variable X if P[X € 0A] = 0, where 0A is the (topological) boundary
of A. .

Theorem 5.7. Let (X,));2, be a sequence of random variables and X another
random variable. Then the following are equivalent:

d
(@ X, - X
(b) E[h(X,,)] — E[h(X)] for all bounded and continuous h: R — R

(¢) liminf P[X, € U] > P[X € U] forall open U c R

n—00

(d) limsup, | P[X, € F] < P[X € F] forall closed F ¢ R

(e) lim P[X,, € A] = P[X € A] for all continuity sets A of X

n—-oo

Proof. (a) © (Db) is the definition.

(b) = (c): Let U be open and choose an increasing sequence h,,, of contin-
uous and bounded functions such that 4,, — 1;; pointwise. For instance one
can set h,, (x) = (mdist(x,U°)) A 1, where dist(x, A) = inf{|x — y| : y € A}
is the distance of x from the set A ¢ R. Then for any fixed m > 1 we have
P[X, € U] = E[h,,(X,,)] for all n and thus

liminf P[X,, € U] > E[h,,(X)].

n—.oo

The claim follows by letting 1 — oo and using the monotone convergence
theorem.
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5. Convergence in law and the central limit theorem

(c) © (d) & (e): Exercise.

(c) = (b): Let h: R — R be bounded and continuous. By considering the
positive and negative parts of h separately it is enough to consider the case
h > 0. Let us denote y,, = (X)), P and y = X, IP. We have by Fubini’s theorem
that

Al oo
E[h(X,)] = J}R h(x)dp, (x) = LR L T ayor) At bty (%)

1Al o
= j P[h(X,) > t] dt.
0

By Fatou’s lemma and (c) then

17l o
liminf E[h(X,,)] > J liminfP[h(X,,) > t] dt

n—-oo 0 n—-00

N L"h""" P[h(X) > ] df = E[h(X)].

where we used the fact that P[h(X,,) > t] = P[X,, € h!((t,00))], where by
the continuity of / the set h1((t,00)) is open. Similarly we can compute that

Al 1]l
E[h(X,)] = L P[h(X,) > t]dt = |kl - L P[h(X,) < t] dt

and thus

1Al
limsup E[h(X,,)] = Al ., —lim infj P[h(X,,) < t]dt
n—00 0

n—00

Al oo
< |hllg - L Plh(X) < t]dt

- J"h""" P[h(X) > t] dt = E[h(X)].

0

E[h(X,)] = E[h(X)] as wanted.
O

n—oo

Thus limsup | E[h(X,)] = liminf,

Remark. The above proof works also for R%-valued random variables. .

5.2 Tightness

Often when one wants to show convergence in distribution for a given se-
quence (X,,);2, of random variables, it is useful to split the proof into two
parts: First one shows that the sequence is tight, which means that no prob-
ability mass escapes to infinity. Secondly, we will soon see that tightness then
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5. Convergence in law and the central limit theorem

implies that there is a subsequence of X, that converges in distribution and to
show convergence of the original sequence it is then enough to show that each
converging subsequence converges to the same limit.

(o]

Definition 5.8. A sequence (y4,,);2; of probability measures on R is tight if for
every € > 0 there exists a compact subset K C R such that y,(K) > 1 — ¢ forall
nzxl.

A sequence (x,,),2, of random variables is tight if their laws form a tight
sequence of probability measures. .

Remark. The above definition works also for random variables taking values
in R? or more generally any metric space. .

Theorem 5.9 (Prokhorov’s theorem). A sequence (X,,),2, of random variables
is tight if and only if for every subsequence X,, of X, there exists a further sub-
subsequence X,, which converges in law.

]

Proof. We prove that if (X,,);,2; is tight then there exists a subsequence which
converges in law. The other direction is left as an exercise.

Assume that the sequence (X,,);2, is tight and let F, be the c.d.f. of X, . We
will next apply the following lemma.

Lemma 5.10 (Helly’s selection theorem). Every sequence (F,))52, of c.d.f.s con-
tains a subsequence F,, that converges to some right-continuous increasing func-
tion F at every continuity point x of F.

Assuming this lemma for now we will be done if F is a c.d.f,, i.e. if

lim F(x) =0 and lim F(x)=1.

X—>—=00 X—00

But this is clear by tightness since for any ¢ > 0 if M > 0 is so large that
E, (x) 21— ¢eforall x > M and x is a continuity point of F then

F(x) = lim F, (x) >1—g¢,
k—oo 'k

showing that lim
limit.
Thus it remains to show [Lemma 5.10 The proof will be based on a diago-

nalization argument. Let (g,,);,2; be an enumeration of the rationals. We will

oo F(x) = 1 and similar argument works to show the other

inductively construct a sequence ((ng))iil)?fl of sequences and then look at

;{k). We begin by simply setting n; = k. Then assume that ng)

has been constructed and let ng“) be a subsequence of ng) such that an+1) (g;)

the diagonal n

converges to alimit F(g;) as k — co. This is possible since F,; (g;) is a bounded
sequence of real numbers. We thus see that the diagonal subsequence satisfies
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F(q;) — F(q;) for alli > 1. Extend then the definition of F to R by setting

F(x)= inf F
0= e FY)

for x € R. The function F is increasing since F(q;) < F(q;) for g; < g; and F is
clearly right-continuous.
It remains to show that if x is a continuity point of F then lim;_, Fnl(ck) (x) —

F(x). Let ¢ > 0 and pick a rational g, > x such that F(q) — F(x) < e. Then
limsup, | Fnl({k) (x) < F(q) < F(x) + &, so by letting ¢ — 0 we get that

lim sup F”g() (x) < F(x).

k—o00

Similarly considering g < x such that F(x) — F(q) < & we get
liI{n ian”ik) (x) = F(x),

which proves the claim. ]

Remark. Prokhorov’s theorem also holds for random variables taking values
in a separable metric space, in particular R?. The proof is a bit more involved,
see e.g. [2, Theorem 5.19] for the RY case. .

5.3 Characteristic functions

A useful tool in the study of the distribution of a random variable is its Fourier
transform or as people in probability like to say characteristic function.

Definition 5.11. Let X be a random variable. The characteristic function of
X is the function ¢y : R — C given by

@y (t) = E[e"X]. .

A couple of remarks concerning complex valued random variables are in
order.

o The expectation of complex valued random variable Z = X +iY with real
and imaginary parts X,Y € L' can be defined as E[Z] = E[X] +{E[Y].

« One can extend the definition of the L? spaces (p € [0, 00]) to contain
complex valued random variables by saying that Z € L if both X € L
andY € I7.

o The definitions of the norms/metrics in these spaces stay basically the
same formally since in the end they are all based on looking at abso-
lute distances | X(w) — Y (w)| of two real numbers, but the absolute value

82



5. Convergence in law and the central limit theorem

makes sense for complex numbers as well. Thus for example || Z|;, =
(E[|Z|P])V/P for p > 1lordp(Z,W)=E[|Z-W]|A1]

o Similarly a family (Z;),; of complex valued random variables is uni-
formly integrable if for all € > 0 there exists § > 0 such that E[|Z;|1,] <
¢ for all events A with P[A] < 6.

« Since the definitions are formally the same except that the codomain of
random variables has been changed from R to C, most of the proofs of
basic theorems concerning expectations and uniform integrability also
carry through word-by-word just by changing the codomains of the ran-
dom variables from R to C. Arguments which split a function to its neg-
ative and positive parts to reduce to the case of non-negative functions
also usually work since in the complex case one can simply split into 4
parts corresponding positive/negative real/imaginary parts.

Now, with the above clarifications in mind, we see that the characteristic
function is well defined since e* € [*° for all t € R.

A simple but very useful feature of characteristic functions is that they work
very nicely with sums of independent random variables.

Proposition 5.12. Let X and Y be independent random variables. Then

Pxsy () = ¢x ()@, (t)
forallt € R.
Proof. Clear. O]

One of the main properties of characteristic functions is that they charac-
terise the distribution. In fact we have the following inversion theorem.

Theorem 5.13. Let X be a random variable and y = X P be its law. Then

T —iat _ ,—ibt
L[ g tde = (@ b + Jutla b

T—oo 271 J_T i

Exercise 5.14. Show that if one knows u((a, b))+ % u({a, b}) for all real numbers
a < b, then one can recover the probability measure p. .

Proof of[Theorem 5.13] Let use write

T e—iat _ e—ibt
I = J =" et
-T it

83



5. Convergence in law and the central limit theorem

eiat —ibt

—e
it

Note that

b _; . )
- L e ™" dx is bounded, so by Fubini’s theorem we have

T (oo p-iat _ ,-ibt co (T -iat _ ,-ibt
I; = j J %e’”‘ du(x)dt = J J %e’”‘ dt du(x).
-T J-oc0 it —00 J-T it

By doing the change of variables ¢ — —t we have that

T e—i(a—x)t _ e—i(b—x)t T _ei(a—x)t + ei(b—x)t
, dt = ,
-T it -T 1t

dt

so taking the average of the two sides

T e—z’(a—x)t _ e—i(b—x)t T e—i(a—x)t _ ei(a—x)t + ei(b—x)t _ e—z’(b—x)t
dt = dt

-T it -T 2it

and hence recalling that (e — e™*)/(2i) = sin(x) we have

I - f:o ( J'_TT sin((xt— a)t) gt J’TT sin((xt— b)t) dt) du(x)
_, [’:O ( JOT sin((xt— a)t) gt LT sin((xt— b)t) dt) du(x)
_, J_ooo0 ( JOT(x—a) Siri(t) g LT(x—b) sint(t) dt) du(x).

Let us denote

S o J: sn;(t) it = sgn(u) Jolm siI;(t) r.

I =2 ro (S(T(x - a)) = S(T(x - b)) du(x).

Since lim,,_, ., S(u) = i% (exercise), we have that

0, ifx<aorx>b
Tlim (S(T(x—a)) —S(T(x -b))) = g, if x € {a, b}

m, ifa<x<b
and the claim follows by the dominated convergence theorem. O

In the case where ¢y is integrable the inversion theorem gets a simpler form.

Theorem 5.15. Let X be a random variable with characteristic function @x. If
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I lox ()| dt < oo, then X has a p.d.f. f which is bounded and continuous and

_ i OO —itx
fx) = o J_OO e "oy (t)dt.

Proof. Let pbe the law of X. We may write for any a < b the inversion theorem

as
T

1 1
M((as b)) + 5/"({“, b}) = 711_}1'20 2_ J

b
J e Mo (t)dxdt.
T J-T Jg

. .. b _; .
Note that since @y is integrable and | _[a e ”‘t| < |a-b|, by the dominated con-

vergence theorem we can take the limit as T — oo and apply Fubini’s theorem
to get

(o)

1 1 (b ,
u((a, b)) + Ey({a, b}) = Py L L)o e o (t)dt dx.

Letting b — a here shows that u({a}) = 0 so there are no atoms, and
b
p@b) = | fdx

with f(x) = 5= [* e gy (t) dt as wanted. Clearly | f(x)| < 5= [ lpx ()] dt
so f is bounded, and if x, — y, then by dominated convergence theorem
f(x,) = f(y),so f is continuous as well. O

The characteristic function is basically the Fourier transform of the distri-
bution of the random variable. Let us list a few useful properties of Fourier
transforms.

Definition 5.16. Let f : R — R be integrable. The Fourier transform of f is
the function f: R — C given by

ft) = J]R f(x)e™ dx. .

Note the minus sign in the exponential function. In particular if f is the
probability density of some random variable X, then

f(#) = px(®).
Theorem 5.17. The Fourier transform satisfies the following:
(a) If f is integrable, then f(x) = % LR f(t)eitx dr.

(b) If f is compactly supported and smootH'| then for any N > 1 there exists
C > 0 such that | f(£)] < 135 for allt € R.

*Smooth means that f has derivatives of all orders.
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(c) If wis the law of some random variable X with characteristic function @y
and f is an integrable function such that also f is integrable, then

ELFOO] = | Fduo) = - [ Fox© .

Proof. (a) This is basically just a rephrasing of the already proven inversion
theorem in the case where the characteristic function was integrable and can
be proven in a similar manner.

(b) Note that by integration by parts

—itx

For <] [ e =| [ £ S| < i 14 ool ax

(=it)"
foranyn > 1.
(c) By using Fubini’s theorem we have

1 [ 1 L
- J fOgx@ydt = -~ J J e du(x) dt = J f()du(x). O

As a corollary we obtain the following.
Theorem 5.18. Let (X,,)52, be a sequence of random variables.

d
(a) If X,, — X for some random variable X, then ¢x (t) — @x(¢) for all
teR

(b) Ifox converge to some functiong: R — C pointwise and ¢ is continuous
at 0, then ¢ is the characteristic function of some random variable X and
d
X, — X.
Proof. (a) Since x +— exp(itx) is bounded, the claim follows from the defini-
tion of convergence in distribution.
(b) If we can show that X, is tight, then we are done by part (a) since every
subsequential limit of X,, must converge to a random variable with the same

characteristic function.
Consider a smooth function f: R — Rsuchthat0 < f < 1_; ;;and f(0) =

1. Note that f is integrable, indeed, it decays faster than any polynomial. Fix
€ > 0. We have for any K > 0 that

Xi"l
P(IX,| < K] > E[f(22)]

Since the characteristic function of X, /K equals Px, (t/K), we have

X

E[f(C2)] = i J FO)px @/K) dt.
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Choose next K so large that

zi J Ft)(@x(t/K) = 1) dt < g/2.
T

This is possible because of the continuity of ¢y at 0. By the dominated conver-
gence theorem we also have for large enough #» that

1 A 1 .
|§ J f®ex (t/K)dt - o J Ft)ox(t/K)dt| < /2
and since (271) 7! jf(t) dt = f(0) = 1 we get

1
2

1

- Jf(f)(px(t/K) dt—¢/2>1-¢.
2

| Fx, 150>

Thus P[|X,,| < K] > 1 — ¢ for large enough n and by choosing an even larger
K if needed we can ensure this for all #, thus showing that the sequence is
tight. O

5.4 Characteristic function on R and the Cramér-Wold theorem

In this section we will shortly discuss the characteristic functions of R%-valued
random variables.

Definition 5.19. Let X be an R?-valued random variable. Then the character-
istic function of X is the map ¢ : RY — C given by

(PX(t) = ]E[eit.X])
wheret- X =t, X, + -+ +t,X,, is the dot product. .
An analogue of the inversion formula in this case is as follows.

Theorem 5.20. Let X be an R%-valued random variable and u = X, P be its
law. Then

lim

1 J’TI J'Td d e_iaktk _ e_ibktk
Ty Ty—00 (Zn)d '

.. - (pX(t) dtl dtd
-T; Ty k=1 ltk

= ‘u([alab]] X e X [ad)bd])
assuming that [a,,b,] X --- x [ay, b;] is a continuity set of X.

Proof. We skip the proof, but one can essentially mimic the one we did in the
1-dimensional case. [
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5. Convergence in law and the central limit theorem

Again one sees that the characteristic function of R%-valued random vari-

able determines its law and that[Theorem 5.18holds.

As our first application of characteristic functions we will prove the follow-
ing quite useful theorem which reduces showing convergence in law from d-

dimensions to 1 dimension.
Theorem 5.21 (Cramér-Wold theorem). Let (X,,)52,, X be a R%-valued ran-

n=1>

d d
dom variables. Then X, — X ifand only if for everyt € R? we havet-X, — t-X.

d
Proof. If X,, — X, then since the map t > t - X is continuous, from (a R%-

d
valued version) of [Theorem 5.5 we get thatt - X, — ¢ - X.

d
For the other direction, note thatif ¢ - X,, — t - X, then
Px, (t) = (Pt-Xn(l) - (Pt-X(l) = (Px(t),
d
so the characteristic functions converge pointwise and hence X,, — X. O]

5.5 The moment problem

As another application of characteristic functions we will look at the moment
problem.

Definition 5.22. Let X be a random variable and n > 1. If E[|X|"] < o0, we
say call the number M,, := E[X"] the nth moment of X. .

The moment problem asks whether it is possible to construct from a list of
moments (M,,);2, a random variable X with the given moments, and if the
answer is “yes’, whether the law of X is unique. In general the answer to the
first question is no, and even if such a random variable exists it may fail to be
unique.

For the existence it is not so easy to give good conditiong’} and we will focus
on showing that under some mild assumption on the growth of the moments
the random variable is indeed unique.

Theorem 5.23. Let X and Y be two random variables such that all the moments
M, = E[X"] = E[Y"] are finite. If

M,
n

lim sup < 00

n—00

then X and Y have the same law.

>One can show that M,, is a sequence of moments of some measure on real line if and only if
the infinite matrix (M,,,,,),, ,, is positive semi-definite, but this is usually not a very prac-
tical condition to work with.
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5. Convergence in law and the central limit theorem

Proof. Itisenough to show that M, determine the characteristic function of X.
Note that the condition implies that there exists K > 0 such that |[M,,| < K"n".
Now ifa € Rand z € Cis such that |z —a| < 1/(Ke) then by Stirling’s formula
we have n! > n" /e" for large enough 7 (in fact this holds for all n > 1) and thus

z anKT’l n
Z + < Z(Iz alKe)" < oo,
n=1 :

so by Fubini’s theorem we have
i(z-a)X
(PX(Z) IE[@ z—a)X zaX Z (i( ) )" laX]

v (i(z-a)"E [X”e’“x]
Bl n! ’

i

Thus ¢y is an analytic function in U = {z € C : [Im(z)| < 1/(Ke)}, and in
particular by setting a = 0 we see that its values in B(0, 1/K) are determined
by the sequence M,,. By analytic continuation we thus see that M,, determine
the values @y (z) for all z € U and in particular for all z € R. ]

Exercise 5.24. The condition in[Theorem 5.23]is not optimal and can be sharp-

ened e.g. to Carleman’s condition
Z M—l/ (2n) _

This condition is however not optimal either and the proof is more complicated
and out of the scope of this course. .

5.6 Central limit theorem

Like the law of large numbers, the central limit theorem is a statement about
sums S, = Y, X, ofiid. random variables X;. Where the law of large num-
berslooks atn~'S, where we have normalized the sum to have a constant mean,
the central limit theorem instead looks at the fluctuations of S, around its mean
on the level where it has a constant variance, namely n-1/2 (S, — E[S,]). The
surprising result is then that this converges in distribution to a normal random
variable with variance E[(X, — E[X,])?].

This can also be seen as a heuristic justification for the choice of normal
random variables as a model of statistical experiments where randomness from
many independent sources is added up.
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5. Convergence in law and the central limit theorem

Theorem 5.25. Let (X)), be a sequence of i.i.d. random variables in [*. Then

S, —nE[X]
\n

converges in law to a normal random variable with mean 0 and variance E[(X | —
E[X,])*].

Proof. We may without loss of generality assume that E[X;] = 0 and E[X}] =
1. Let Z, = n"'/2S,. Our aim is to show that Z, converges in distribution
to a standard normal random variable Z. It is thus enough to show that the

£ .
characteristic functions ¢, (f) converge pointwise toe” = = E[e''?]. Since Z,
is a sum of i.i.d. random variables, we have that

¢z, (1) = (@1nx, ()" = (px, (t/ V)"

Let us next consider Px, (t) = E[e"]. Note that it is differentiable since by
linearity
]E[ei(t+h)X] _ E[eitX] ei(t+h)X _ eitX
p = E[ p ]

and [e/*MX _ ¢t X| = |g"X _ 1| < |hX] so one can apply the dominated con-

vergence theorem. (Note that |hX]| is the length of the arc on the unit circle
connecting the points 1 and e”X.) Thus px () = E[iXe"*] and in particular

¢x,(0) = E[iX] = 0. Similarly we see that (p%) exists and (p§(21) (0) = —-E[X?] =
—1. Thus by Taylor’s theorem

2
ox, () = 1= = + o)

as t — 0. This means in particular that

2
9,,(8) = px, (t/ V)" = (1= — + o = )"
" 2n n
We next note that for any a, b € C with |a|, |b| < 1 we have the general bound
la" =b"| = |(a-b)@ ' +a" b+ - +ab" 2 +b" V)| < nla-b.

Applying this with a = @y (t/+/n) and b =1 - % (for large enough 7 so that
|b] < 1) we see that

2 t2
lpz, (£) — (1 - 5) | < ”0<;> —0
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5. Convergence in law and the central limit theorem

+2
as n — 00. Since famously (1 - %)“ — e~ 2, the proof is completed. ]

The conditions of the central limit theorem can be relaxed in various ways.
Let us mention the following where the variables are no longer assumed to be
identically distributed and take values in R?.

Let us recall the definition of a multivariate normal random vector.

Definition 5.26. Let C € R¥? be a positive definite matrix, i.e. v/ Cv > 0 for
allv € R?. An R%-valued random variable X is said to have normal distribu-
tion with mean p € R and covariance matrix C if X has the p.d.f.

1 1 T -1
— =5 (=) C (x—p)
X) = e 2 :
Px) = i o)
This distribution is often denoted by N(yu, C). .

Let us also denote by Cov(X,Y) := E[(X - E[X])(Y — E[Y])T] € R the
covariance between two R?-valued random variables. Here the expectation is
taken coordinate wise.

Theorem 5.27 (Lindeberg-Feller theorem). Assume that for every n > 1 the
R%-valued random variables X+ > Xpg (k, > 1) are independent. Further-
more, suppose that

(@) Y E[X;] — p ¢ R
(b) Zl;il Cov(X,, i Xn,j) 5 C e R

(c) Forall € > 0 we have Zl;-il ]E[lxn,j|2]1|Xn’j|>s] — 0, where | - | is the Eu-

clidean norm (or more generally any norm) on R?,
Then
k, d
S, =Y X,; = NuC).
j=1

Proof sketch. First of all we note that by the Cramér-Wold theorem it is enough
to consider the case d = 1. Indeed if we look at the scalars Y, ; =t - X, ; for
some ¢ € R?, then 21;21 ]E[Yn’]-] — t-puand Z?ﬁl IE[Y,ij] — tTCt. The third
condition is also satisfied since it clearly holds if t = 0 and if ¢ # 0 we have by
Cauchy-Schwarz that

k

kﬂ n
2 BUY, Py, gl < 12 Y ENX, P L pey] = 0.
= =
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5. Convergence in law and the central limit theorem

Hence from the one dimensional result we would get

k k
n n d
£ X,;=> Y, = N(t-ut'Ct)
=1

for all t € R? and hence since N(t - Us tTCt) d t - N(u,C) the result would
follow from Cramér-Wold.

To show the one dimensional case one can pretty much just follow along the
lines of the proof of[Theorem 5.25| Note that we can assume that ¢ = 0 by sub-
tracting from each X, 1ts mean E[X ]. We again look at the characteristic

function of S,,,
kn

95, () = [T ox, ®.

j=1
This time one needs to look at the Taylor expansion of Px, (t) a bit more care-
fully. Let us fix t € R. Note that
9x,, () = Bl T o] + Ble™ Ly o).

In the first term we may use a second order Taylor expansion e™' = 1 + ixt —
x*t2)2 + O(x*) to get

. X ) ;
E[elt ™ ]1{|Xn,j|S£}] = ]E[]l{an,j|S€}] + E[ltX”’jn{lxn,jlge}]
£2
- S EIXG T x, <] + OCELX;]),

while for the second term we use first order Taylor expansion to get
Ele"™ iy gl = BlLx o] +EitX, i1 jeq] +OENX, ;P g
Adding these up we get

¢x,, () =1~ EE[ 1+ OCE[IX,, ;1”1 + OE[IX, ;L 15g]).

Next we would like to show that

1_[<pX (t) - 1‘[(1——1E [X2,])

goes to 0 as n — 0o. Here instead of the inequality |a" — b"| < n|a — b| that we
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5. Convergence in law and the central limit theorem
had before we can use a more general inequality
n n n
[[Ta -1t < X la; b
j=1 =1 j=1

for all complex numbers (aj);l:l’ (bj);‘:1 with |aj|, ijl < 1 (exercise). Thus we
get

kn kn 2 k?l
t
TTox, -1~ SEIX,P)| < Y CElX,,P)+ E1X, PLx, 0D
]:1 ]:1 ]:1

where the right hand side tends to eéC as n — oo. This proves the claim since
we can choose ¢ as small as we wish. The proof is finished either by taking log-
arithms and doing Taylor expansion, or by looking at the above computation
in the case where X, ; are normal r.v.s, to check that

5.7 Stable laws and further limit theorems

The CLT shows that for centered i.i.d. random variables (X,);2; with finite
variance there is a universal limit for the normalized sum n~"/2(X e+ X)),
Next it would be natural to ask what happens if the variables do not have finite
variance. For simplicity we will assume that they are however symmetric, i.e.
x, £ x,.

To answer the question, it is helpful to start by thinking backwards — what
can we say if we have a CLT-type result, saying that

d
CH(Xl + - +X1’l) — Y

for some nonzero random variable Y and normalizing constants ¢, > 0? We
may rewrite this for 2n random variables as

c d
%(cn(X1 +oet X )+, (X + o+ Xy,) = Y. (5.1)

n

Now one can check thatc, (X; +---+X,) +¢,(X,,; +-+ X,,) ht Y, +Y, where
Y, and Y, are independent and have the same distribution as Y. Furthermore,
it is also not hard to prove that in order to have convergence in also
has to converge to some positive constant which we will call d,. Hence we ggt
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5. Convergence in law and the central limit theorem

in particular the functional equation

Py (£) = (py (dy1))?

forallt € R.

Next one can ask what are all the functions ¢y that satisfy this functional
equation. For instance we can check thatif Y = ¢ # 0 is a constant, then this
implies that e = % for all t, so that d, = 1/2 and in particular c,, =
27"c¢; + 0(27") corresponds to the normalization appearing in the law of large
numbers and we would have Y = 0 which is a contradiction. Thus we may
from now on assume that Y is not constant.

In general it however unfortunately seems like there might still be quite a
few solutions, since basically given e.g. any positive real function f on [d,, 1]
with f (d2)2 = f(1) one can uniquely extend f into a function f: (0, co] that
satisfies the functional equation for positive t. One also has lim,_,,, f(¢) =1
and setting f(¢t) = f(—t)fort < 0 gives a function which satisfies the functional
equation and even has f(0) = 1. This is still not necessarily a characteristic
function of some probability measure, but it indicates that perhaps a bit more
information is needed to nail things down.

Luckily we can do a similar splitting as before, but this time into 3 parts to
get an additional functional equation

Py (t) = (py(ds1))’.

This should really help us fix things since now every ¢y (¢) can be related to
@y (1) by multiplying by suitable powers of d, and d;.

Lemma 5.28. Let x and y be two positive real numbers.

(a) Then there exist two sequences (a;)ze, and (b )i2, of nonzero integers such
that x® y% — 1.

(b) Moreover iflog(x)/log(y) is irrational, then for any t > 0 there exist two
sequences (a;)$2, and (b)), such that x* y% — t.

Proof. Exercise. O

To characterise ¢ it is perhaps easiest to start with the function h(t) = |@y (¢)],
since then we can take roots and obtain the more general functional equation

h(t) = (h(dgdit)>™

foralla,b e Z.
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5. Convergence in law and the central limit theorem

Since Y is not a constant, there exists t € R such that 0 < |h(t)| < 1. ] Then
by choosing g, and b, as in the lemma, we see that

h(t) = (h(d5*dye) > ",

Since d;kdé’kt — t, we must have 2%3% — 1. Taking logarithms we see that
a; log(2) + b log(3) — 0, and g, log(d,) + by log(d;) — 0. This implies that
log(d,) _ log(2)
log(d;) — log(3)"

Having identified the relationship between d, and d; we now actually see
that since log(2)/log(3) is irrational, for any t > 0 we can in fact choose se-

quences (a;)$2, and (b)2, so that 27%*P375F _ ¢ The equation

In particular if we write d, = 27P for some 3, then d, = 37P.

h(1) = h(2 %P3 b2

then implies by continuity that

(1B

h(t) = h(1)" .
Writing h(1) = e for some ¢ > 0, we have that
h(t) = e"”.

Finally since ¢y is continuous and real (since Y is symmetric), we must have

that @y (t) = e for some c, B > 0. Probability distribution with such
characteristic functions are called stable laws.

Definition 5.29. For « € (0,2] and ¢ > 0 random variable Y is said to have a
symmetric a-stable distribution with parameter c if its characteristic func-
tion is of the form

e
lel®, .

py(t) =e

The word stable refers to the fact that sums of independent «-stable random
variables stay «-stable.

There is no point in extending the definition to « > 2 since in this case ¢y
will be twice differentiable which will imply that E[Y?] = 0, so Y o (details
left to the reader).

To see that for & < 2 the function e is a characteristic function of a ran-
dom variable is a bit tricky since for & ¢ {1/2, 1, 2} the corresponding p.d.f. has
no formula in terms of elementary functions. To show the existence of such
stable laws one can e.g. take (X,) a sequence of i.i.d. random variables with

—clel*

3Indeed, if one picks two disjoint intervals [a, b] and [c, d] such that Y positive probability of
hitting either of them, then for small enough ¢ > 0 we have [ta, tb], [tc, td] C [-m, 7] and
disjoint, so |E[eY]| < 1 because |E[¢"Y]| = 1 holds if and only if €™ is constant almost
surely.
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5. Convergence in law and the central limit theorem

P[X, > A] = P[X,, < —A] = x™¥/2 for all x > 1. Then the characteristic func-
tions of (X; +--- + Xn)/nl/"‘ tend to e " for some C > 0. See [1} Section 3.8]

for details and more about stable laws.
The end.
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Metrics and pseudometrics

In this appendix we give a very minimal review of metric and pseudometric
spaces.

Definition A.1. Let X be a set. A pseudometricd on Xisamapd: X x X —
[0, 00) such that for all x, y,z € X we have

o d(x,x) = 0 (identity)

o d(x,y) =d(y,x) (symmetry)
o d(x,y) <d(x,z) +d(z, y) (triangle inequality)
The pseudometric d is a metric if it satisfies the stronger property
o d(x,y) =0ifand only if x = y. (identity and indiscernibles)
The pair (X, d) is called a (pseudo)metric space. .

Any pseudometric space can be made into a metric space by identifying the
points with distance 0 from each other, i.e. considering the equivalence rela-
tion x ~ y & d(x, y) = 0 and defining on the set of equivalence classes X/ ~
the metric d([x], [ y]) = d(x,y). We leave it to the reader to check that ~ is
an equivalence relation and that d is a well-defined metric. For instance the
Ky Fan metric dyp from is only a pseudometric on the space of all
random variables, but becomes a metric once we identify almost surely equal
random variables.

A pseudometric d induces a topology 7; on X where a set U ¢ X is open if
and only if for every x € U there exists r > 0 such that the open ball B,(x,r) :=
{y € X : d(x, y) < r}is contained in U. This topology is Hausdorft if and only
if d is a metric.

In particular one easily checks the following.

Proposition A.2. Let (X,dy) and (Y, dy) be two pseudometric spaces and let
f+ X = Y bea function. Then f is continuous at x € X if and only if for every
e > 0 there exists 8 > 0 such that f(BdX (x,9)) C BdY (f(x),e).

One of the most useful properties of pseudometric spaces is that their topol-
ogy can alternatively be characterized using sequences.

Definition A.3. Let (X, d) be a pseudometric space and suppose that (x,,);,2; is
a sequence of points in X. Then we say that x,, converges to a point x € X and
write x,, — x if and only if d(x,,, x) — 0. .
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In a metric space the limits of sequences are unique but note that if we have
d(x, y) = 0 for some x # y in a pseudometric space, then every sequence that
converges to x also converges to y.

The closure of a set is nicely described using sequences.

Proposition A.4. Let (X, d) be a pseudometric space and let A ¢ X. Thenx € A
(the topological closure of A) if and only if there exists a sequence (a,,),>, of points
in A such that a,, — x.

Proof. Suppose first that x € A. Then every open ball B, = B,(x, 1/n) inter-
sects A and we may picka, € B, N A. Clearlya,, — x.

Conversely suppose that a, — x for some sequence (a,,),2, of points in A.
If U is any open neighbourhood of x then it contains an open ball B,(x, r) for
some r > 0 and by definition a,, € B,(x,r) for all n large enough. Hence
U intersects A and as U was arbitrary we have x € A. O

In particular a set A ¢ X is closed if and only if the limits of all converging
sequences in A stay in A. Thus closed sets are determined by converging se-
quences and as the open sets are exactly the complements of closed sets, also
the topology is determined by converging sequences.

Basic topological notions such as continuity can also be stated in terms of
sequences.

Proposition A.5. Let (X,dy) and (Y, dy) be pseudometric spaces and f: X —
Y a function. Then f is continuous at x € X if and only if for every sequence
x, — x we have f(x,) — f(x).

Proof. It f is continuous at x and x,, — x, then for any ¢ > 0 we may pick
0 > 0 such that f(BdX (x,9)) c f(BdY (f(x),¢€)). As x,, € Bx(x,08) eventually,
we see that f(x,) € de (f(x), €) eventually which (since & > 0 was arbitrary)
implies that f(x,) — f(x).

Conversely suppose that f is not continuous at x. Then we may pick ¢ >
0 such that for every n > 1 we have f(BdX (x,1/n)) ¢ f(BdY (f(x),¢)). Letting
x, € By (x,1/n) be such that dy(f(x,), f(x)) > & we thus get a sequence
x, — x such that f(x,) f(x). [

A stronger property than continuity is uniform continuity, which is not any-
more a purely topological notion.

Definition A.6. Let (X, dy) and (Y, dy) be pseudometric spacesand f: X —
Y a function. We say that f is uniformly continuous if for every ¢ > 0 there
exists & > 0 such that dy (x, x") < & implies dy (f(x), f(x")) < e. .

A function f: X — Y between pseudometric spaces is Lipschitz if and only
if there exists K > 0 such that dy (f(x), f(x")) < Kdy(x,x") forall x,x’ € X.
Lipschitz functions are hence uniformly continuous (choose § = ¢/K in the
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definition). A very important special case is that of an isometry, which means
that dy (f(x), f(x")) = dy(x,x") forall x,x" € X.

More generally uniformly continuous functions can be characterized as fol-
lows.

Proposition A.7. Let (X,dy) and (Y, dy) be pseudometric spaces. A function
f: X — Y isuniformly continuous if and only if there exists an increasing func-
tion ¢: [0,00) — [0, c0] (possibly allowing the value co) such that ¢(t) — 0 as
t — 0, (0)=0and

dy (f(x), f(x")) < p(dx(x,x"))
forall x,x" € X.

Proof. If such ¢ exists, then for every € > 0 we can find § > 0 such that () < ¢
when t < 8, and thus dy (f(x), f(x')) < e when dy (x, x") < 8, showing that f
is uniformly continuous. If on the other hand f is uniformly continuous then
defining

¢(t) = sup{dy (f(x), f(x")) : dx(x,x") < t}.
it is easy to check that ¢ satisfies the needed properties. ]

A function ¢ as in the above proposition is called a modulus of continuity
of f.

Uniform continuous functions can be thought of as functions that at least
on small enough scales stretch the distances in a uniform manner. This makes
them useful for example when studying Cauchy sequences.

Definition A.8. Let (X, d) be a pseudometric space. A sequence (x,,),>; of
points in X is Cauchy if and only if for every & > 0 there exists N > 1 such that
d(x,,x,,) < eforalln,m > N. .

Note that if f: X — Y is uniformly continuous and (x,,);,2, is a Cauchy
sequence in X then f(x,,) is a Cauchy sequence in Y.

Cauchy sequences give an intrinsic way of saying which sequences should
converge because their points get closer and closer together. It can however
happen that the space is missing the anticipated limit point. For instance in
(Q,] - |) the recursively defined sequence x; = 1, x, = 1 + L forn > 2is

n—1
+2\5 which is an irrational number.

X

Cauchy but it converges to the golden ratio

Definition A.9. A pseudometric space (X, d) is complete if every Cauchy se-
quence in X converges. .

A central result is that any metric space can be completed in an essentially
unique way by adding some points. For pseudometric spaces it is a bit less clear
what would be the right completion since one can always add more points with
distance 0 to some existing point. There is a unique Hausdorft completion of a
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pseudometric space but this is just the completion of the induced metric space
X/ ~ mentioned above and therefore loses the original information on equidis-
tant points. Therefore we will only discuss completions of metric spaces.

Definition A.10. A completion of a metric space X is a pair (X, 1) where X is

a complete metric space and 1: X — X is an isometry such that /(X) is dense

in X. .
The main result for completions is the following.

Theorem A.11. Every metric space has a completion.

We will skip the proof since you have probably already seen it and also be-
cause we will only need completions of normed spaces which we will discuss
in The standard and perhaps most principled way of construct-
ing the completion would be to define X as the set of Cauchy sequences on
X, modulo the equivalence relation that two Cauchy sequences (x,,),>; and
(¥,)n2; are equivalent if dy (x,,, ¥,) — 0. One can then proceed to define

(x) = [0 x,..)] and - dg(lx,] [y,]) = lim dy(x,, y,)

and show that this metric is well-defined and complete and that « is an isom-
etry. Another somewhat shorter proof of existence goes through the so called
Kuratowski embedding, which embeds X isometrically into a complete metric
space. One can then define the completion of X by taking the closure of X
inside this bigger space.

The specific construction of the completion is however usually not impor-
tant since once we know that they exist there are cleaner ways to characterise
them:

Proposition A.12. A completion (X, 1) of a metric space X satisfies and is char-
acterised up to an isomorphisnf'| by the following universal property: If f : X —
Y is a uniformly continuous map from X to a complete metric space Y then there
is a unique uniformly continuous extension f : X — Y satisfying f = f o

Proof. Suppose first that f: X — Y is a uniformly continuous map. As (X)
is dense in X, for any X € X there is a sequence x,, € X such that i(x,) — %.
Then as f is uniformly continuous, the sequence f(x,) is Cauchy and thus
converges to some limit in Y which we call f(x). Moreover if we had picked
another sequence i(x,) — x, then dy(f(x,), f(x,)) < ¢(dx(x,,x,)) — 0,
where ¢ is the modulus of continuity of f. Thus f is a well-defined function
and clearly f = foraswell. It is moreover uniformly continuous with the same
modulus of continuity since for any %, y € X we may pick sequences (x,,)%,

! An isomorphism between two such pairs (X,,,) and (X,,1,) isamap S: X, — X, which
is an isometric isomorphism and satisfies 1, = Seo ;.
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)OO

and (y,

dy (£, f(7) = lim dy (£, F(3,) < lim 9(dx (.0 ) = 9 (x, 7))

L with «(x,)) — % and (y,) — » and then

The map f is unique since it is continuous and has to equal f o 1™! on «(X)
which is dense.

To show that the universal property characterises the completions of X, sup-
pose that (X,,,) and (X,,1,) are two completions of X. Then applying the
universal property to the maps ¢, and 1; we get two maps S, : X; — X, and
S,: X, — X, respectively with 1, = S, o1, and 1; = S, o 1,. But this shows that
1, =S, 08, o1y sothat S, o S, is identity on ¢, (X) and by uniqueness has to be
identity on whole X,. Similarly S, oS, is the identity map on X,. Thus S, is a bi-
jection with S;! = S,. Moreover dXz (S0, (%)), $,(1;,(»))) = dXz (1, (%), ,(y)) =
dx(x,y) = dg (11(x),1,(p)) for all x,y € X so S, is an isometry when re-
stricted to ¢, (X ) but then by cont1nu1ty and density of 1, (X) in X it has to be
an isometry on whole X,. Hence X is isometrically 1somorph1c to X, which
finishes the proof. O
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Normed spaces and completions

In this appendix we have gathered a small amount of basic facts about normed
vector spaces.

Definition B.1. Let X be a (real) vector space and | - ||: X — [0, 00) a norm.
Then the pair (X, | - ||) is called a normed space. .

If X is a normed space, then d(x, y) := ||x — y| defines a metric on X. We
endow X with the topology induced by d, this topology is also called the norm
topology or strong topology on X.

Definition B.2. A complete normed space is called a Banach space. .

The natural maps to study in this setting are the continuous linear maps. A
basic result is that continuity is equivalent to boundedness.

Proposition B.3. Let (X, || - |x) and (Y, || - |ly) be normed spacesandT: X — Y
a linear map. Then T is continuous if and only if it is bounded, meaning that
there exists a constant C > 0 such that

ITxlly < Clixlix

forall x € X.

Proof. 1f |[Tx|y < Cllx|x for all x € X, then we have
ITx = Tyly = T(x - pl <Clx - ylx

and T is Lipschitz and hence continuous.

Conversely assume that T is continuous and that there exists a sequence
(x,,)n2; of nonzero elements of X such that |Tx,|y/llx,[|x — co. By picking
a subsequence we may actually assume that || T'x, ||y /llx,[lx > 7. Let us define

X

Yn = e Then we have ||y, llx = 1/nand |Ty,|ly > 1, but this contradicts
the continuity of T since now y,, — 0 and hence also T'y,, — 0. ]

The smallest constant C for which the inequality |Tx|y < C|x||x holds is
called the norm of T' and denoted by || T

It is also helpful to note that linearity actually boosts the continuity to uni-
form continuity.

Lemma B.4. A continuous linear map T: X — Y between two normed spaces
is uniformly continuous.
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B. Normed spaces and completions

Proof. Forany x,y € X wehave [Tx-Tyly = T(x—- »ly < ITlllx - ylx so
T has a global modulus of continuity ¢(s) = ||T[|s (s > 0). l

Particularly important maps are the ones that preserve distances.

Definition B.5. A linear map T: X — Y between two normed spaces is an
isometry if | Tx[ly = [x|x for all x € X. .

Clearly an isometry is automatically an injection and hence a linear embed-
ding of X into Y. The isometric property ensures that also the norm structures
in X and T(X) agree, and hence T(X) can be viewed as an isomorphic copy of
the normed space X sitting inside Y.

Let us finally discuss completions of normed spaces.

Definition B.6. Let (X, | - [x) be a normed space. Any pair (X, T) where X is
a Banach spaceand T: X — X is a linear isometry such that T(X) is dense in
X is called a completion of X. .

Given a completion X of X we usually view X as a subset of X, in a similar
manner as we view the rational numbers as a subset of the real numbers, even
if the particular construction we used for the real numbers might actually not
possess such an inclusion relation in a purely set theoretic sense.

The main theorem of this appendix is that completions exist. Before that, let
us note that as in the case of metric spaces there is a nice way to characterise
completions:

Proposition B.7. A completion (X, 1) of a normed space X satisfies and is charac-
terised up to an isomorphism by the following universal property: If Y is any Ba-
nach space and A: X — Y is a continuous linear map, then A extends uniquely
to a continuous linear map A: X — Y such that A = AoT. Moreover, the norms
of A and A are equal.

Proof. Mimic the proof of|Proposition A.12| O

We will end this appendix with a proof of the existence of completions.

Theorem B.8. Any normed space X has a completion.

Before the proof let us recall a bit of functional analysis.

Definition B.9g. Let X be a normed space. The (continuous) dual space of X
is the space

X* :={¢p: X - R : ¢ islinear and continuous}
endowed with the norm

lpllx- = sup lo(x)l. .

xeX,|x[<1
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B. Normed spaces and completions

The norm in X™ is the same as defined above for continuous linear maps
T: X — Y in the special case where Y = R. It is simple to check that it indeed
defines a norm on X*.

We note that duals are always complete.

Proposition B.10. Let X be a normed space. Then X* is a Banach space.

(o]

Proof. Suppose that (¢,,),2, is a Cauchy sequence in X*. Then for any fixed
x € X the sequence ¢, (x) is also Cauchy in R and converges to some limit
which we denote ¢(x). It is easy to check that the map ¢ : X — Rislinear and
satisfies |p(x)| < sup,., o, llxlxllx for any x € X, so that ¢ € X*. Finally
let e > 0 and x € X with ||x|| < 1 be arbitrary and choose n > 1 so large that
o, — @,.ll < €forallm > n. (Note that n does not depend on x.) Then

|9, (x) = 9()| < lim sup(llp,, = @, [l + 9, (x) — p(x)]) < &
m—-00
and as x was arbitrary we see that ||¢,, — ¢|| < e. Since also € was arbitrary we
have ¢, — @ in X*. [

The final ingredient we will need for the proof of is the Hahn-

Banach theorem.

Theorem B.11 (Hahn-Banach). Let X be a normed space and E C X be a vector
subspace. Suppose that f : E — R is a continuous linear map (w.r.t. the norm
on X). Then there exists a continuous linear map F: X — R with F(x) = f(x)
forallx € E.

We will skip the proof. In fact Hahn-Banach is only needed if one wants
to prove the general version of When we actually use it in
it is only in the case where X is the set of simple random variables
under the L'-norm. We will indicate after the proof below how to handle this
special case without using Hahn-Banach.

Proof of[Theorem B.8} Let X* be the dual of X and X** be the dual of X* (also
known as the bidual of X). Let us define the map 1: X — X™** by mapping x
to the map u, : X* — R given by u, (¢) = ¢(x) for all ¢ € X*. The map «is
linear since for all x, y € X and a,b € R we have u,,;,,(¢) = ¢(ax + by) =
ag(x) + bp(y) = au, () + bu ,(¢) forall ¢ € X so that l(ax + by) =u
au, + buy = ai(x) + bi(y).

Next we claim that / is an isometry. Note first that we have the upper bound

ax+by =

1)l = Nuglixs = sup  |u (@) < lx]x.
eeX* llplx+<1

It remains to show that there exists some ¢ with [|¢|| < 1 such that |u, (¢)| =
l@(x)| = [Ix[lx. This is where Hahn-Banach will enter: We will simply extend
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B. Normed spaces and completions

the linear functional ¢, (tx) = t| x|y defined on the subspace {tx : t € R} ¢ X
to a continuous linear functional ¢ on whole X so that it becomes an element
of X*.

Finally we define X as the closure of (X) in X**. As X** is complete by
[Proposition B.10} also X as a closed subspace is complete and by definition
1(X) is dense in X. l

In the special case where X = Sis the space of simple random variables
with the L' -norm, we can avoid the use of Hahn-Banach as follows: Note that
any y € § gives an element ¢, in the dual of S by setting ¢, (x) = E[yx]
for all x € S. Indeed, this map is clearly linear and it is continuous since
|E[yx]| < |yl llxll;i. Thus in particular if we choose y = sgn(x) we get
(py(x) = E[sgn(x)x] = E[|x]|] = |x|l;:, showing that ux((py) = [|x|lx as was
needed in the proof.
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Radon-Nikodym theorem

In this appendix we will provide a proof of the Radon-Nikodym theorem. It
is mainly based on [7].

Theorem C.1. Let (T, G, u) be a probability space and assume that v is another
measure on T such that v < p. Then there exists a measurable function f: T —
[0, 00] such that

v(A) = J fdu
A
forall A € G.

Remark. For simplicity we will prove this theorem in the case where v is also
a probability measure. It is easy to show that the theorem is true when y and
v are both o-finite measures, and with some extra work one can get rid of this
assumption for v. .

Let us start with the following lemma.

Lemma C.2. Let A C G be a collection such that
o Ifu(A) =0, then A € A.
o If u(A) > 0, then there exists B ¢ A with u(B) > 0 and B € A.

o A is closed under countable disjoint unions.
Then A = G.

Proof. Let us fix E € G and try to show that E € A. Consider all collections
(A;);er of disjoint sets A; ¢ E with u(A;) > 0 and A; € A. We can order such
collections by inclusion, and by Zorn’s lemma there exists a collection (E;);¢;
which is maximal. Now the index set has to be countable since u(E;) > 0 for
alli € I and E has a finite measure. Thus E = |4, ; E; belongs to 4. We
cannot have u(E \ E) > 0 since otherwise by assumption there would be some
E' ¢ E\ E which we could add to the collection (E,),.;, contradicting the
maximality. Since E \ E has 0 measure, also E = EU (E \ E) belongs to 4. [

Proof of[Theorem C.1] As indicated in the remark above, we will assume that

v is also a probability measure. Consider the following set of functions:

H={f:T—-[0,00]: f measurable,J fdu<v(E)forall E € G}.
E
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The idea is roughly to take the largest of all functions in H. One cannot simply
take the pointwise supremum, though, since this could easily be the constant
function oo if all the singletons of T have zero measure. We will thus go in a
bit roundabout way and define instead the maximal total mass

M= Sup{ijd‘u . feH} <v(T) =1

Note that if f,g € H, then also f V g € H, since

J(fvg)du=J fd#+J gdu
E En{f>g} En{f<g}

<Vv(EN{f=g})+v(En{f <g})=v(E).

Thus there exists a pointwise increasing sequence f,, € H such that IT f,du —
M. Let us now define f = sup, f, and claim that f is a Radon-Nikodym
derivative of v with respect to p.

By the monotone convergence theorem it is clear that f satisfies JE fdu<
v(E), so it is enough to show the opposite inequality. Assume in contrary that
there exists a set E and € > 0 such that IE fdu < v(E) — 2e. We claim that
inside E there exists a subset F ¢ E with y(F) > 0 and such that f + el € H.
If not, then for all F ¢ E of positive y-measure there exists a set G such that
IG(f +ellp) dp = v(G). We see then from

v(GNF)+v(G\F) =v(G) < JG(f+s]1F)d‘u < JG F(f+5]1GnF) du+v(G\F)
N

that also the set G = G N F ¢ F satisfies that IG(f +elz) = v(G). Hence the
collection

A={GCE: L(f+ellG)dy2v(G)}

satisfies the second bullet in It is also clear that A contains the
sets of measure 0 inside E and is closed under countable unions. Thus in fact
A contains all the measurable subsets of E, including E itself, but this is a con-
tradiction since then

J fd‘u+£2J,(f+£11E)d‘qu(E)Zj fdu+2e.
E E E

Thus there must exist a set F ¢ E with u(F) > 0and f + ¢l € H, but this now
contradicts the fact that j f du = M is the supremum of total masses over H,

since j(f+sﬂF) du > M + eu(F). O
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