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Notation

Set theory

𝑥 ∈ 𝐴 𝑥 is an element of the set 𝐴
𝐴 ∪ 𝐵 union of two sets
𝐴 ∩ 𝐵 intersection of two sets
𝐴 ⧵ 𝐵 difference of two sets
𝐴∆𝐵 symmetric difference: 𝐴∆𝐵 = (𝐴⧵𝐵)∪(𝐵⧵𝐴)
P (𝐴) power set of 𝐴 (the set of all subsets of 𝐴)
(𝑥𝑛)𝑁𝑛=1 finite sequence 𝑥1, 𝑥2,… , 𝑥𝑁
(𝑥𝑛)∞𝑛=1 infinite sequence 𝑥1, 𝑥2,…
(𝑥𝑛)𝑛 countable (finite or infinite) family
(𝑥𝑖)𝑖∈𝐼 family indexed by an arbitrary index set 𝐼
⋃𝑖∈𝐼 𝐴𝑖 union of a family of sets
⋂𝑖∈𝐼 𝐴𝑖 intersection of a family of sets
⨄𝑖∈𝐼 𝐴𝑖 union of disjoint sets
|𝐴| number of elements in the set 𝐴

Sets of numbers

ℕ natural numbers 1, 2,…
ℤ integers
ℚ rational numbers
ℝ real numbers
ℂ complex numbers
ℂ̂ Riemann sphere ℂ̂ = ℂ ∪ {∞}
𝑖ℝ imaginary numbers
𝔻 open unit disc𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1}
𝐵(𝑧, 𝑟) open ball 𝐵(𝑧, 𝑟) = {𝑤 ∈ ℂ ∶ |𝑤 − 𝑧| < 𝑟}
𝐴(𝑧, 𝑟, 𝑅) annulus𝐴(𝑧, 𝑟, 𝑅) = {𝑤 ∈ ℂ ∶ 𝑟 < |𝑤−𝑧| < 𝑅}

Complex analysis
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Re(𝑧) real part, Re(𝑥 + 𝑖𝑦) = 𝑥
Im(𝑧) imaginary part, Im(𝑥 + 𝑖𝑦) = 𝑦

|𝑧| modulus, |𝑧| = √𝑥2 + 𝑦2

𝑧 conjugate 𝑧 = 𝑥 − 𝑖𝑦
Arg(𝑧) principal branch of argument, Arg(𝑧) ∈

(−𝜋, 𝜋]
Log(𝑧) principal branch of logarithm, Im(Log(𝑧)) ∈

(−𝜋, 𝜋]
𝛼 ∧ 𝛽 exterior product of 𝛼 and 𝛽
𝑑𝜔 exterior derivative of 𝜔

Usual conventions

𝑈 open set 𝑈 ⊂ ℂ
𝑧,𝑤 complex numbers
𝑥, 𝑦 real coordinates, 𝑧 = 𝑥 + 𝑖𝑦
𝛾 curve 𝛾∶ [0, 1] → ℂ
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Introduction

The aim of these lecture notes is to present the basics of complex analysis
with the main points of focus being contour integrals and power series. More
broadly, complex numbers provide a flexible framework to do vector analysis
in the plane, and to fully leverage their power in computations we have opted
to present our complex calculus in a modern way using differential forms. In
this way, many of the classical complex analysis results such as Cauchy’s inte-
gral theorem are seen to be simple consequences of Stokes’ theorem and hold
not only for holomorphic functions but for arbitrary closed 1-forms.

The lecture notes have been written from scratch without following any ex-
isting text books or lecture notes in particular, but some sources of inspiration
have been the earlier lecture notes by Hurri–Syrjänen [2] and the text books
by Rudin and Spivak [4, 5] for differential forms.
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Complex numbers

1.1 Complex arithmetic

The history of complex numbers is closely linked with the history of solving
polynomial equations. The third order equation 𝑥3 + 𝑝𝑥 + 𝑞 = 0 for given
𝑝, 𝑞 ∈ ℝ can be solved using Cardano’s formula

𝑥 = 𝐴 − 𝑝
3𝐴
, 𝐴 =

3

√−𝑞
2
+ √𝑞
2

4
+ 𝑝
3

27
.

When 𝑞
2

4 +
𝑝3
27 ≥ 0, this can be computed using real numbers to get a real

solution of the equation. On the other hand, when 𝑞
2

4 +
𝑝3
27 < 0 it turns out that

the roots are all real, yet cannot be expressed using only real-valued square
and cubic roots. This eventually led to the expansion of the number system
by introducing imaginary numbers such as 𝑖 = √−1. A modern algebraic
definition of complex numbers from this point of view would be the following.

Definition 1.1. The ringℂ ≔ ℝ[𝑖]/(𝑖2 + 1) is called the ring of complex num-
bers. ◆

Here ℝ[𝑖] denotes the ring of real polynomials of the symbolic variable 𝑖,
and (𝑖2 + 1) denotes the ideal generated by the polynomial 𝑖2 + 1. This means
that in the quotient ring ℝ[𝑖]/(𝑖2 + 1) the equation 𝑖2 + 1 = 0 holds and hence
𝑖 is a square root of −1.

Example 1.2. If 𝑥1 + 𝑦1𝑖 ∈ ℂ and 𝑥2 + 𝑦2𝑖 ∈ ℂ, then their product is

(𝑥1+𝑦1𝑖)(𝑥2+𝑦2𝑖) = 𝑥1𝑥2+𝑥1𝑦2𝑖+𝑦1𝑥2𝑖+𝑦1𝑦2𝑖2 = 𝑥1𝑥2−𝑦1𝑦2+(𝑥1𝑦2+𝑦1𝑥2)𝑖.

In particular 𝑖0 = 1, 𝑖1 = 𝑖, 𝑖2 = −1, 𝑖3 = −𝑖, 𝑖4 = 1. ◆
By using the relation 𝑖2 = −1 any polynomial 𝑎𝑛𝑖𝑛 + 𝑎𝑛−1𝑖𝑛−1 +⋯+ 𝑎1𝑖 + 𝑎0

can be reduced to a polynomial of the form 𝑥+𝑖𝑦 for some 𝑥, 𝑦 ∈ ℝ. Moreover,
𝑥1 + 𝑖𝑦1 = 𝑥2 + 𝑖𝑦2 if and only if 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2. This means that we can
also defineℂ as ordered pairs of real numbers, or equivalently as points in the
Euclidean plane ℝ2.

Definition 1.3 (Alternative definition of ℂ). The ring ℂ, also known as the
complex plane, is defined by endowing the vector space ℝ2 with the multi-
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1 Complex numbers

plication operation (𝑥1, 𝑦1) ⋅ (𝑥2, 𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2). We write
(𝑥, 𝑦) = 𝑥 + 𝑖𝑦, treating 1 = (1, 0) and 𝑖 = (0, 1) as basis vectors. ◆

Lemma 1.4.The two definitions give rise to isomorphic rings via the isomor-
phism 𝑥 + 𝑖𝑦 ↦ (𝑥, 𝑦).

Proof. Exercise.

Remark. Although it does not matter whether one uses Definition 1.1 or 1.3,
for the purposes of this course the second one is perhaps more natural since,
as we will see, complex analysis is tightly connected with the geometry and
topology of the Euclidean plane. The advantages of the first definition are that
it is historically motivated, and that if one knows about polynomial rings and
their quotients, it immediately tells us that ℂ is a commutative ring. ◆

Definition 1.5. If 𝑧 = 𝑥 + 𝑖𝑦 is a complex number (with 𝑥, 𝑦 ∈ ℝ), then 𝑥 is
called the real part of 𝑧 and denoted by Re(𝑧), while 𝑦 is called the imaginary
part of 𝑧 and denoted by Im(𝑧). ◆

In particular ℝ is embedded in ℂ via the mapping 𝑥 ↦ 𝑥 + 0𝑖. The sets
ℝ = {𝑧 ∈ ℂ ∶ Im(𝑧) = 0} and 𝑖ℝ = {𝑧 ∈ ℂ ∶ Re(𝑧) = 0} are called the real and
imaginary axes, respectively.

Definition 1.6. The modulus of a complex number 𝑧 ∈ ℂ is its Euclidean
norm |𝑧| ≔ √Re(𝑧)2 + Im(𝑧)2 ∈ [0,∞). ◆

We recall that norms satisfy the triangle inequality |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|.

Definition 1.7. The complex conjugate of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is
given by 𝑧 ≔ 𝑥 − 𝑖𝑦. ◆

We have illustrated the complex plane, the real and imaginary axes, a com-
plex number 𝑧, its conjugate 𝑧 and modulus |𝑧| in Figure 1.1.

A useful property of the complex conjugate is that it can be used to factor
|𝑧|2, since for 𝑧 = 𝑥 + 𝑖𝑦 we have

𝑧𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥2 + 𝑦2 = |𝑧|2.

We can use this to show thatℂ is in fact a field, meaning that every 𝑧 ∈ ℂ⧵ {0}
has a multiplicative inverse. Indeed, note that since ℝ is a field, the inverse of
|𝑧|2 exists and hence 𝑧/|𝑧|2 is an inverse of 𝑧.

Example 1.8. The inverse of 1 + 2𝑖 is

1
1 + 2𝑖
= 1 − 2𝑖
|1 + 2𝑖|2

= 1 − 2𝑖
12 + 22
= 1
5
− 2
5
𝑖. ◆

In the following lemma we have listed some basic identities regarding con-
jugates, real and imaginary parts and the modulus.
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1 Complex numbers

𝑧 = 𝑥 + 𝑦𝑖 = (𝑥, 𝑦)

𝑖

2𝑖

1 2

−𝑖

−2𝑖

−1−2

̄𝑧 = 𝑥 − 𝑦𝑖 = (𝑥, −𝑦)

|𝑧| = √𝑥2 + 𝑦2

3𝑖

−3 3

−3𝑖

𝑖ℝ

ℝ

Figure 1.1: The complex plane.
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1 Complex numbers

Lemma 1.9.The following hold for all 𝑧, 𝑤 ∈ ℂ:

• 𝑧 = 𝑧

• 𝑧 + 𝑤 = 𝑧 + 𝑤

• 𝑧𝑤 = 𝑧 ⋅ 𝑤

• (𝑧/𝑤) = 𝑧/𝑤 (assuming 𝑤 ≠ 0)

• Re(𝑧) = 12(𝑧 + 𝑧)

• Im(𝑧) = 12𝑖(𝑧 − 𝑧)

• |𝑧| = |𝑧|

• |𝑧𝑤| = |𝑧||𝑤|

Proof. Exercise.

1.2 Convergent sequences and series

In Definition 1.3 we interpreted complex numbers as points in the plane. This
also lets us use the Euclidean topology ofℝ2 as our topology inℂ. In particular,
we use the modulus | ⋅ | to define the distance |𝑧 − 𝑤| between two points
𝑧, 𝑤 ∈ ℂ, which makes ℂ a complete metric space. We denote by

𝐵(𝑧, 𝑟) ≔ {𝑤 ∈ ℂ ∶ |𝑤 − 𝑧| < 𝑟}

the open ball of radius 𝑟 > 0 around 𝑧 ∈ ℂ.

Theorem 1.10.The operations (𝑧, 𝑤) ↦ 𝑧 + 𝑤, (𝑧, 𝑤) ↦ 𝑧𝑤, 𝑧 ↦ 𝑧, 𝑧 ↦ |𝑧|
and ℂ ⧵ {0} ∋ 𝑧 ↦ 𝑧−1 are continuous.

Proof. Let us check (𝑧, 𝑤) ↦ 𝑧𝑤 and leave the rest as an exercise. Note that
(𝑧, 𝑤) ↦ 𝑧𝑤 can be viewed as a map from (ℝ2)2 ≅ ℝ4 → ℝ2 given by
(𝑥1, 𝑦1, 𝑥2, 𝑦2) ↦ (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑥2𝑦1), which is continuous since sums
and products of real numbers are continuous. (Notice that we used here the
fact that the product topology ofℝ2×ℝ2 is the same as the topology ofℝ4.)

As usual, a sequence (𝑧𝑘)𝑘≥1 of complex numbers converges to 𝑧 if for every
𝜀 > 0 there exists 𝑘0 ≥ 1 such that |𝑧 − 𝑧𝑘| < 𝜀 for all 𝑘 ≥ 𝑘0. This is equivalent
to asking that the coordinate sequences (Re(𝑧𝑘))𝑘≥1 and (Im(𝑧𝑘))𝑘≥1 converge
to Re(𝑧) and Im(𝑧).

Definition 1.11. If (𝑧𝑘)𝑘≥1 are complex numbers such that the sequence 𝑆𝑛 =
∑𝑛𝑘=1 𝑧𝑘 converges to 𝑆 ∈ ℂ, we say that the series∑∞𝑘=1 𝑧𝑘 converges and equals
𝑆. ◆
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1 Complex numbers

Again, convergence of a series ∑∞𝑘=1 𝑧𝑘 is equivalent to the convergence of
∑∞𝑘=1 Re(𝑧𝑘) and ∑

∞
𝑘=1 Im(𝑧𝑘).

Definition 1.12. We say that a series∑∞𝑘=1 𝑧𝑘 converges absolutely if the series
∑∞𝑘=1 |𝑧𝑘| converges. ◆

Lemma 1.13. If a series converges absolutely, then the series converges.

Proof. Since ℂ is complete, it is enough to show that ∑𝑛𝑘=1 𝑧𝑘 is a Cauchy se-
quence. For 𝑛 ≥ 𝑚 we have by the triangle inequality

|
𝑛

∑
𝑘=1
𝑧𝑘 −
𝑚

∑
𝑘=1
𝑧𝑘| = |

𝑛

∑
𝑘=𝑚+1
𝑧𝑘| ≤

𝑛

∑
𝑘=𝑚+1
|𝑧𝑘|

which goes to 0 as 𝑛,𝑚 → ∞ since by assumption ∑𝑛𝑘=1 |𝑧𝑘| converges and is
therefore Cauchy.

One useful application of absolute convergence is to the exchange of order
of summation.

Theorem1.14. Let (𝑧𝑗,𝑘)∞𝑗,𝑘=1 be a double sequence of complex numbers. Suppose
that ∑∞𝑗=1 ∑

∞
𝑘=1 |𝑧𝑗,𝑘| < ∞. Then ∑∞𝑗=1 ∑

∞
𝑘=1 𝑧𝑗,𝑘 = ∑

∞
𝑘=1 ∑
∞
𝑗=1 𝑧𝑗,𝑘 and both series

converge.

Proof. Writing 𝑧𝑗,𝑘 = 𝑥𝑗,𝑘 + 𝑖𝑦𝑗,𝑘 and noticing that |𝑥𝑗,𝑘| ≤ |𝑧𝑗,𝑘|, we see that
∑∞𝑗=1 ∑

∞
𝑘=1 |𝑥𝑗,𝑘| < ∞. By the corresponding theorem for real double sequences

we then get
∞

∑
𝑗=1

∞

∑
𝑘=1
𝑥𝑗,𝑘 =

∞

∑
𝑘=1

∞

∑
𝑗=1
𝑥𝑗,𝑘

with both series converging. Similarly, we get

∞

∑
𝑗=1

∞

∑
𝑘=1
𝑦𝑗,𝑘 =

∞

∑
𝑘=1

∞

∑
𝑗=1
𝑦𝑗,𝑘

and it follows that ∞

∑
𝑗=1

∞

∑
𝑘=1
𝑧𝑗,𝑘 =

∞

∑
𝑘=1

∞

∑
𝑗=1
𝑧𝑗,𝑘.

1.3 The exponential function

Definition 1.15. A series of the form ∑∞𝑘=0 𝑎𝑘(𝑧 − 𝑧0)
𝑘 where 𝑎𝑘, 𝑧0, 𝑧 ∈ ℂ is

called a power series with coefficients 𝑎𝑘 and variable 𝑧, centered at 𝑧0. ◆
A power series 𝑓(𝑧) = ∑∞𝑘=0 𝑎𝑘(𝑧 − 𝑧0)

𝑘 defines a function 𝑓∶ 𝐷 → ℂ on
its domain of convergence𝐷 = {𝑧 ∈ ℂ ∶ ∑𝑘=1 𝑎𝑘(𝑧 − 𝑧0)

𝑘 converges}. We will
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1 Complex numbers

study power series in detail later on, but for now we will just use it to define
the exponential function.

Definition 1.16. The exponential function exp ∶ ℂ → ℂ is defined via the
power series

exp(𝑧) ≔ 𝑒𝑧 ≔
∞

∑
𝑘=0

𝑧𝑘

𝑘!
. ◆

Lemma 1.17.The power series of exp(𝑧) converges absolutely for every 𝑧 ∈ ℂ.

Proof. The limit ∑∞𝑘=0
|𝑧|𝑘
𝑘! exists and equals 𝑒|𝑧| by the definition of the real-

valued exponential function.

Similarly to the exponential function we may define the functions cos(𝑧)
and sin(𝑧) by extending their known power series to the complex plane.

Definition 1.18. The trigonometric functions cos(𝑧) and sin(𝑧) are defined via
the power series

cos(𝑧) ≔
∞

∑
𝑘=0

(−1)𝑘𝑧2𝑘

(2𝑘)!
and sin(𝑧) ≔

∞

∑
𝑘=0

(−1)𝑘𝑧2𝑘+1

(2𝑘 + 1)!
. ◆

Theorem 1.19 (Euler’s formula). For any 𝑧 ∈ ℂ we have

exp(𝑖𝑧) = cos(𝑧) + 𝑖 sin(𝑧).

In particular when 𝜃 ∈ ℝ, exp(𝑖𝜃) lies on the unit circle at angle 𝜃 counter-
clockwise from the positive real axis.

Proof. We have

exp(𝑖𝑧) =
∞

∑
𝑘=0

𝑖𝑘𝑧𝑘

𝑘!
=
∞

∑
𝑘=0

𝑖2𝑘𝑧2𝑘

(2𝑘)!
+
∞

∑
𝑘=0

𝑖2𝑘+1𝑧2𝑘+1

(2𝑘 + 1)!

=
∞

∑
𝑘=0

(−1)𝑘𝑧2𝑘

(2𝑘)!
+
∞

∑
𝑘=0

𝑖(−1)𝑘𝑧2𝑘+1

(2𝑘 + 1)!
= cos(𝑧) + 𝑖 sin(𝑧).

Theexponential function satisfies the same functional equation as in the real
case.

Theorem 1.20.We have 𝑒𝑧+𝑤 = 𝑒𝑧𝑒𝑤 for all 𝑧, 𝑤 ∈ ℂ.

Proof. By the binomial theorem we have

𝑒𝑧+𝑤 =
∞

∑
𝑘=0

(𝑧 + 𝑤)𝑘

𝑘!
=
∞

∑
𝑘=0

𝑘

∑
ℓ=0

1
𝑘!
(
𝑘
𝑙
)𝑧ℓ𝑤𝑘−ℓ.
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1 Complex numbers

Since the series converges absolutely, we may change the order of summation
and get

𝑒𝑧+𝑤 =
∞

∑
ℓ=0

∞

∑
𝑘=ℓ

𝑧ℓ𝑤𝑘−ℓ

ℓ!(𝑘 − ℓ)!
=
∞

∑
ℓ=0

∞

∑
𝑘=0

𝑧ℓ𝑤𝑘

ℓ!𝑘!
= 𝑒𝑧𝑒𝑤.

1.4 Polar coordinates and the logarithm

Recall that polar coordinates can be used to specify a point in the plane by
giving its radius 𝑟 ≥ 0 and angle 𝜃 ∈ ℝ, in which case its Cartesian coordinates
are (𝑟 cos(𝜃), 𝑟 sin(𝜃)). ByTheorem 1.19 the complex exponential function lets
us write this concisely as 𝑟𝑒𝑖𝜃.

Conversely, given 𝑧 ∈ ℂ we have 𝑧 = |𝑧|𝑒𝑖 arg(𝑧), where arg(𝑧) is the argu-
ment of 𝑧. For 𝑧 = 0 any argument can be used, while for non-zero 𝑧 the
argument is well-defined modulo integer multiples of 2𝜋. A common way to
fix the argument is to constrain it to the interval (−𝜋, 𝜋], in which case one can
use the specific choice

Arg(𝑥 + 𝑖𝑦) =

{{{{{{
{{{{{{
{

0, if 𝑥 ≥ 0, 𝑦 = 0;
𝜋, if 𝑥 < 0, 𝑦 = 0;
𝜋
2 − arctan (

𝑥
𝑦) , if 𝑦 > 0;

−𝜋2 − arctan (
𝑥
𝑦) , if 𝑦 < 0.

The function Arg is known as the principal branch of the argument. It is
not continuous along (−∞, 0], which is called the branch cut of the princi-
pal branch. See Figure 1.2.

Example 1.21. Let us find the polar representation of −3+2𝑖. We first compute
the modulus | − 3 + 2𝑖| = √9 + 4 = √13. Noting that 𝑦 > 0, we see that its
argument is 𝜋2 −arctan (

−3
2 ) ≈ 2.55 ≈ 146

∘. Hence, −3+2𝑖 = √13𝑒𝑖(
𝜋
2 +arctan(

3
2 )).

◆
Let us next give geometric interpretations to complex arithmetic. The addi-

tion 𝑧 ↦ 𝑧+𝑎 is equivalent to addition of vectors ofℝ2 and just translates 𝑧 by
𝑎. The map 𝑧 ↦ 𝑧 can be viewed as a reflection in the real axis. Multiplication
is a bit more interesting since it is a combination of rotation and scaling.

Proposition 1.22. Let 𝑧, 𝑤 ∈ ℂ ⧵ {0}. Then 𝑧𝑤 satisfies |𝑧𝑤| = |𝑧||𝑤| and
arg(𝑧𝑤) = arg(𝑧) + arg(𝑤) (mod 2𝜋). Similarly, 𝑧/𝑤 satisfies |𝑧/𝑤| = |𝑧|/|𝑤|
and arg(𝑧/𝑤) = arg(𝑧) − arg(𝑤) (mod 2𝜋).

Proof. The identity |𝑧𝑤| = |𝑧||𝑤| was part of Lemma 1.9. Let arg(𝑧𝑤), arg(𝑧)
and arg(𝑤) denote some choices for the arguments of 𝑧𝑤, 𝑧 and𝑤, respectively.

13



1 Complex numbers

−𝜋

𝜋

𝑧 = 𝑟𝑒𝑖𝜃

𝜃 = Arg(𝑧) ∈ (−𝜋, 𝜋]

Figure 1.2: Polar coordinates and Arg.
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1 Complex numbers

We note that

|𝑧𝑤|𝑒𝑖 arg(𝑧𝑤) = 𝑧𝑤 = |𝑧|𝑒𝑖 arg(𝑧)|𝑤|𝑒𝑖 arg(𝑤) = |𝑧𝑤|𝑒𝑖(arg(𝑧)+arg(𝑤)),

which implies that arg(𝑧𝑤) = arg(𝑧) + arg(𝑤) + 2𝜋𝑘𝑖 for some 𝑘 ∈ ℤ. The
division rule follows from the fact that 𝑤−1 = |𝑤|−1𝑒−𝑖 arg(𝑤).

In particular note that multiplying by 𝑟𝑒𝑖𝜃 is equivalent to rotation by angle
𝜃 and scaling by 𝑟.

Example 1.23. Multiplying by 𝑖 = 𝑒𝑖𝜋/2 is equivalent to rotation by 𝜋/2 radians
(90∘) counter-clockwise. ◆

Example 1.24. The roots of the polynomial 𝑧𝑛 − 1 = 0 for 𝑛 ≥ 1 are given by
𝑧 = 𝑒2𝜋𝑖𝑘/𝑛 with 0 ≤ 𝑘 ≤ 𝑛 − 1. They are called the 𝑛-th roots of unity. ◆

In general, a nonzero complex number 𝑧 = 𝑟𝑒𝑖𝜃 has 𝑛 𝑛-th roots given by
𝑟1/𝑛𝑒𝑖𝜃/𝑛+2𝜋𝑖𝑘/𝑛 for 0 ≤ 𝑘 ≤ 𝑛 − 1. When we write 𝑛√𝑧, we can in principle be
referring to any of these roots. When a choice has to be singled out, a popular
approach is to take 𝑛√𝑧 = |𝑧|1/𝑛𝑒𝑖Arg(𝑧)/𝑛, which is the principal branch of the
𝑛-th root defined using the principal branch of arg.

Finally, let us note that the map from Cartesian to polar coordinates can
be also viewed through logarithms. Indeed, 𝑧 = |𝑧|𝑒𝑖 arg(𝑧) = 𝑒log(|𝑧|)+𝑖 arg(𝑧)
motivates the following definition.

Definition 1.25. Let 𝑧 ∈ ℂ ⧵ {0}. For any choice of arg(𝑧), the number

log(𝑧) = log(|𝑧|) + 𝑖 arg(𝑧)

is called a logarithm of 𝑧. Here log(|𝑧|) is the usual real-valued logarithm. The
unique choice

Log(𝑧) = log(|𝑧|) + 𝑖Arg(𝑧)

is called the principal branch of log. ◆
One has to sometimes be careful with the multivalued nature of arg: We

always have exp(log(𝑧)) = exp(log(|𝑧|) + 𝑖 arg(𝑧)) = |𝑧|𝑒𝑖 arg(𝑧) = 𝑧 for any
choice of arg(𝑧), so taking exponentials of logarithms is generally straight-
forward. On the other hand log(exp(𝑧)) can in principle be taken to be any
number of the form 𝑧 + 2𝜋𝑘𝑖 for 𝑘 ∈ ℤ! For this reason it is often impor-
tant to keep track of the exact value of arg(𝑧) being used. Notice in particu-
lar that Log(exp(𝑧)) = 𝑧 holds if and only if Im(𝑧) ∈ (−𝜋, 𝜋], while for in-
stance Log(exp(2𝜋𝑖)) = Log(1) = 0 ≠ 2𝜋𝑖. Similarly, the addition formula
Log(𝑧𝑤) = Log(𝑧) + Log(𝑤) holds if and only if Arg(𝑧) + Arg(𝑤) ∈ (−𝜋, 𝜋].
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Vector analysis on the complex plane

The purpose of this chapter is to introduce convenient notation and tools for
doing calculus on the plane. In particular, we will define complex-valued dif-
ferential forms and integrals over curves and regions. Our main result in the
end will be Stokes’ theorem, which is a generalization of the fundamental the-
orem of calculus. To keep the exposition light, we will restrict ourselves strictly
to the plane and the real line.

2.1 Integrals over curves

Definition 2.1. A map 𝛾∶ [0, 1] → ℝ2 is called a 𝐶1-curve if 𝛾′(𝑡) exists and
is continuous for all 𝑡 ∈ [0, 1] (with one-sided limits at end points). ◆

Let 𝛾 be a 𝐶1-curve. If 𝑓∶ 𝛾([0, 1]) → ℂ is a continuous function defined
on the curve, we would like to define integrals such as

∫
𝛾
𝑓(𝑧) 𝑑𝑧.

Intuitively, we view this as a Riemann sum

∫
𝛾
𝑓(𝑧) 𝑑𝑧 ≈

𝑁

∑
𝑛=1
𝑓(𝑧𝑛)(𝑧𝑛+1 − 𝑧𝑛),

where (𝑧𝑛)𝑁𝑛=1 is an evenly distributed collection of points on 𝛾([0, 1]), running
from 𝛾(0) to 𝛾(1). We could also do the change of variables where we write
𝑧𝑛 = 𝛾(𝑡𝑛) for points 𝑡1 < ⋯ < 𝑡𝑁 ∈ [0, 1], and get

∫
𝛾
𝑓(𝑧) 𝑑𝑧 ≈ ∑𝑓(𝛾(𝑡𝑖))(𝛾(𝑡𝑖+1) − 𝛾(𝑡𝑖)) ≈ ∑𝑓(𝛾(𝑡𝑖))𝛾′(𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖)

≈ ∫
1

0
𝑓(𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡.

In fact, we will soon take the last formula as a definition for the integral. Note
that the orientation of 𝛾 matters: the integral over the opposite curve ̃𝛾(𝑡) =
𝛾(1 − 𝑡) should satisfy

∫
̃𝛾
𝑓(𝑧) 𝑑𝑧 = −∫

𝛾
𝑓(𝑧) 𝑑𝑧.
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2 Vector analysis on the complex plane

The quantity 𝑧𝑛+1 − 𝑧𝑛 should be viewed as an (approximate) tangent vector
at the point 𝑧𝑛. The symbol 𝑑𝑧 in the integral is an example of a differential
1-form, and it signifies that we should sum up the tangent vectors themselves
(multiplied by 𝑓(𝑧𝑛) using complex multiplication).

Another example of a differential 1-form is 𝑑𝑥, whichmaps a tangent vector
to its 𝑥-component. Thus, when integrating against 𝑑𝑥 we should intuitively
think of the Riemann sum

∫
𝛾
𝑓(𝑧) 𝑑𝑥 ≈ ∑𝑓(𝑧𝑖)Re(𝑧𝑖+1 − 𝑧𝑖).

Similarly, we have the 1-form 𝑑𝑦, for which

∫
𝛾
𝑓(𝑧) 𝑑𝑦 ≈ ∑𝑓(𝑧𝑖) Im(𝑧𝑖+1 − 𝑧𝑖),

and thus we can write 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦.
Let us now make this more precise.

Definition 2.2. A tangent vector onℝ2 is a pair (𝑝, 𝑣), where 𝑝 ∈ ℝ2 denotes
the base point and 𝑣 ∈ ℝ2 the direction. For every fixed 𝑝 ∈ ℝ2 we let ℝ2𝑝 be
the set of all tangent vectors (𝑝, 𝑣) based at 𝑝 and call it the tangent space at
𝑝. ◆

The set ℝ2𝑝 becomes a vector space isomorphic to ℝ2 by defining (𝑝, 𝑣) +
(𝑝, 𝑤) = (𝑝, 𝑣 + 𝑤) and 𝑐(𝑝, 𝑣) = (𝑝, 𝑐𝑣) for 𝑐 ∈ ℝ. We will also often abuse
the notation and identify (𝑝, 𝑣) ∈ ℝ2𝑝 with 𝑣, as if 𝑣 already contained the
information about its base point.

Definition 2.3. A (complex-valued) differential 1-form 𝜔 on 𝑈 ⊂ ℝ2 is a
map which assigns every 𝑝 ∈ 𝑈 a ℝ-linear map 𝜔𝑝 ∶ ℝ2𝑝 → ℂ. ◆

By ℝ-linear we mean that 𝜔𝑝(𝑢 + 𝑣) = 𝜔𝑝(𝑢) + 𝜔𝑝(𝑣) and 𝜔𝑝(𝑐𝑢) = 𝑐𝜔𝑝(𝑢)
for all 𝑢, 𝑣 ∈ ℝ2𝑝 and 𝑐 ∈ ℝ.

The standard 1-forms 𝑑𝑥 and 𝑑𝑦 simply act on vectors 𝑣 = 𝑣1 + 𝑣2𝑖 written
in the standard basis (1, 𝑖) by 𝑑𝑥𝑝(𝑣) = 𝑣1 and 𝑑𝑦𝑝(𝑣) = 𝑣2. Note thatℝ-linear
maps ℝ2𝑝 → ℂ themselves form a (ℂ-)vector space (ℝ2𝑝)∗ with basis 𝑑𝑥, 𝑑𝑦,
and hence one can write any differential 1-form 𝜔 in the form

𝜔 = 𝑎(𝑝)𝑑𝑥 + 𝑏(𝑝)𝑑𝑦

for some functions 𝑎, 𝑏∶ 𝑈 → ℂ (we usually drop the subindex 𝑝 from the
forms to lighten the notation). We say that the 1-form 𝜔 is𝐶𝑘 for a given 𝑘 ≥ 0
if 𝑎 and 𝑏 are 𝐶𝑘, meaning that their real and imaginary parts are 𝐶𝑘.

Remark. Why ℝ-linear and not ℂ-linear? We want to have 𝑑𝑥(𝑖) = 0, but if
𝑑𝑥 was ℂ-linear, we would have 𝑑𝑥(𝑖) = 𝑖𝑑𝑥(1) = 𝑖. In other words, 𝑑𝑥 and
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2 Vector analysis on the complex plane

𝑑𝑦 would not be independent and things break down. ◆

Definition 2.4. Let 𝛾 be a 𝐶1-curve and let 𝜔 be a continuous 1-form defined
on the curve. The integral of 𝜔 over 𝛾 is given by

∫
𝛾
𝜔 ≔ ∫

1

0
𝜔𝛾(𝑡)(𝛾′(𝑡)) 𝑑𝑡 ≔ ∫

1

0
Re(𝜔𝛾(𝑡)(𝛾′(𝑡))) 𝑑𝑡 + 𝑖 ∫

1

0
Im(𝜔𝛾(𝑡)(𝛾′(𝑡))) 𝑑𝑡,

where the integrals on the right are the usual real-valued Riemann or Lebesgue
integrals. ◆

Example 2.5. Let 𝜔 = 2𝑑𝑥 + 𝑥𝑑𝑦, and let 𝛾∶ [0, 1] → ℂ be the 𝐶1-curve
𝛾(𝑡) = 𝑡 + 𝑖𝑡2. Then 𝛾′(𝑡) = 1 + 2𝑡𝑖, so that 𝑑𝑥(𝛾′(𝑡)) = 1 and 𝑑𝑦(𝛾′(𝑡)) = 2𝑡
and

∫
𝛾
𝜔 = ∫
𝛾
(2𝑑𝑥 + 𝑥𝑑𝑦) = ∫

1

0
(2𝑑𝑥(𝛾′(𝑡)) + 𝑥(𝛾(𝑡))𝑑𝑦(𝛾′(𝑡))) 𝑑𝑡

= ∫
1

0
(2 + 𝑡 ⋅ 2𝑡) 𝑑𝑡 = 3,

where we viewed 𝑥 as a function 𝑥(𝑢 + 𝑣𝑖) = 𝑢. ◆
It is important to note that the integrals do not change if we reparametrize
𝛾 (without changing orientation).

Lemma 2.6. Let 𝛾 be a 𝐶1-curve, 𝜑∶ [0, 1] → [0, 1] an increasing 𝐶1 bijection
and ̃𝛾 = 𝛾 ∘ 𝜑. Then for any continuous 1-form 𝜔 we have

∫
𝛾
𝜔 = ∫

̃𝛾
𝜔.

Proof. We have

∫
𝛾
𝜔 = ∫

1

0
𝜔𝛾(𝑡)(𝛾′(𝑡)) 𝑑𝑡 = ∫

1

0
𝜔𝛾(𝜑(𝑠))(𝛾′(𝜑(𝑠)))𝜑′(𝑠) 𝑑𝑠

= ∫
1

0
𝜔𝛾(𝜑(𝑠))(𝛾′(𝜑(𝑠))𝜑′(𝑠)) 𝑑𝑠 = ∫

1

0
𝜔 ̃𝛾(𝑠)( ̃𝛾′(𝑠)) 𝑑𝑠 = ∫

̃𝛾
𝜔,

where we used the change of variables 𝑡 = 𝜑(𝑠) and the linearity of 𝜔.

As already hinted above, we also define the following complex differential
1-forms.

Definition 2.7. The complex differential 1-forms 𝑑𝑧 and 𝑑𝑧 are given by

𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 and 𝑑𝑧 = 𝑑𝑥 − 𝑖𝑑𝑦. ◆
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2 Vector analysis on the complex plane

Example 2.8. Let 𝛾 be a 𝐶1-curve and 𝜔 = 𝑓𝑑𝑧 a continuous 1-form on
𝛾([0, 1]). Then

∫
𝛾
𝜔 = ∫

1

0
𝑓(𝛾(𝑡))𝑑𝑧(𝛾′(𝑡)) 𝑑𝑡 = ∫

1

0
𝑓(𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡. ◆

The computations in the examples above might look a bit cumbersome, but
we will learn a systematical and more concise way to make them using pull-
backs in a bit.

2.2 Integrals of 2-forms

Wewill next define differential 2-forms. Similarly to differential 1-formswhich
measure signed lengths, differential 2-forms measure signed areas.

Definition 2.9. A differential 2-form𝜔 on𝑈 ⊂ ℝ2 is mapwhich assigns every
𝑝 ∈ 𝑈 a ℝ-bilinear map 𝜔𝑝 ∶ (ℝ2𝑝)2 → ℂ, meaning that

𝜔𝑝(𝑢 + 𝑣, 𝑤) = 𝜔𝑝(𝑢, 𝑤) + 𝜔𝑝(𝑣, 𝑤)
𝜔𝑝(𝑤, 𝑢 + 𝑣) = 𝜔𝑝(𝑤, 𝑢) + 𝜔𝑝(𝑤, 𝑣)
𝜔𝑝(𝑐𝑣, 𝑤) = 𝑐𝜔𝑝(𝑣, 𝑤) = 𝜔𝑝(𝑣, 𝑐𝑤)

for all 𝑢, 𝑣, 𝑤 ∈ ℝ2𝑝 and 𝑐 ∈ ℝ. We also require that 𝜔𝑝 is alternating, so that

𝜔𝑝(𝑢, 𝑣) = −𝜔𝑝(𝑣, 𝑢)

for all 𝑢, 𝑣 ∈ ℝ2𝑝. ◆
The rough idea is that 𝜔𝑝(𝑢, 𝑣) measures the weighted area of an oriented

parallelogram spanned by 𝑢 and 𝑣. The orientation of a parallelogram can be
given by assigning an ordering to the edges 𝑢 and 𝑣, i.e. sayingwhich of the two
edges comes first. If the second edge is to counter-clockwise direction from the
first one, we say that the orientation is positive, and otherwise negative. This
is accounted for in the definition by requiring that if we swap 𝑢 and 𝑣 then the
sign of a 2-form 𝜔𝑝(𝑢, 𝑣) changes. Notice that this implies that 𝜔𝑝(𝑢, 𝑢) = 0.

Using the multilinearity and alternating property we see that if 𝑢 = 𝑢1 + 𝑖𝑢2
and 𝑣 = 𝑣1 + 𝑖𝑣2 are expressed in the standard basis, then

𝜔𝑝(𝑢1 + 𝑖𝑢2, 𝑣1 + 𝑖𝑣2) = (𝑢1𝑣2 − 𝑢2𝑣1)𝜔𝑝(1, 𝑖).

Recall that the front factor

𝑢1𝑣2 − 𝑢2𝑣1 = det(
𝑢1 𝑣1
𝑢2 𝑣2
) ,
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2 Vector analysis on the complex plane

is indeed the signed area of the parallelogram spanned by 𝑢 and 𝑣, while the
factor 𝜔𝑝(1, 𝑖) is a constant depending on 𝑝 but not on 𝑢 and 𝑣. The standard
2-form 𝑑𝑥 ∧ 𝑑𝑦 is defined by letting

(𝑑𝑥 ∧ 𝑑𝑦)𝑝(𝑢, 𝑣) = 𝑢1𝑣2 − 𝑢2𝑣1

and satisfies (𝑑𝑥 ∧ 𝑑𝑦)𝑝(1, 𝑖) = 1. Thus, we see that every 2-form 𝜔 is of the
form 𝜔 = 𝑓(𝑝)𝑑𝑥 ∧ 𝑑𝑦 for some complex-valued function 𝑓(𝑝).

Above the ∧ in 𝑑𝑥 ∧ 𝑑𝑦 stands for the exterior product of the 1-forms 𝑑𝑥
and 𝑑𝑦. More generally, if 𝜔1 and 𝜔2 are two 1-forms, their exterior product
is given by

(𝜔1 ∧ 𝜔2)(𝑢, 𝑣) ≔ 𝜔1(𝑢)𝜔2(𝑣) − 𝜔2(𝑢)𝜔1(𝑣).

One can easily check that this defines an alternating multilinear map and that
(𝑑𝑥 ∧ 𝑑𝑦)(𝑢, 𝑣) = 𝑢1𝑣2 − 𝑢2𝑣1 holds.

As for parametrized curves, we have the following analogous definition for
integrating over parametrized regions.

Definition 2.10. Let 𝜑∶ [0, 1]2 → ℂ be a 𝐶1-map and 𝜔 a continuous 2-form
defined on 𝜑([0, 1]2). The integral of 𝜔 over 𝜑 is given by

∫
𝜑
𝜔 ≔ ∫

1

0
∫
1

0
𝜔𝜑(𝑥,𝑦)(𝜕𝑥𝜑(𝑥, 𝑦), 𝜕𝑦𝜑(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦,

where 𝜕𝑥𝜑(𝑥, 𝑦) and 𝜕𝑦𝜑(𝑥, 𝑦) are viewed as tangent vectors in ℝ2𝜑(𝑥,𝑦). ◆
Note in particular that if 𝜔 is of the form 𝜔 = 𝑓(𝑥, 𝑦) 𝑑𝑥 ∧ 𝑑𝑦 for some

continuous 𝑓∶ 𝜑([0, 1]2) → ℂ and 𝜑 = 𝜑1 + 𝑖𝜑2, then

∫
𝜑
𝜔 = ∫

1

0
∫
1

0
𝑓(𝜑(𝑥, 𝑦))(𝜕𝑥𝜑1(𝑥, 𝑦)𝜕𝑦𝜑2(𝑥, 𝑦) − 𝜕𝑥𝜑2(𝑥, 𝑦)𝜕𝑦𝜑1(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

= ∫
1

0
∫
1

0
𝑓(𝜑(𝑥, 𝑦)) Jac𝜑(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

where Jac𝜑 is the Jacobian determinant of 𝜑.
As in the case of curves, the value of the integral does not change upon

reparametrization.

Lemma 2.11. Let 𝜑∶ [0, 1]2 → ℂ be a 𝐶1-map, ℎ∶ [0, 1]2 → [0, 1]2 a 𝐶1
bijectionwith positive Jacobian determinant and �̃� = 𝜑∘ℎ be a reparametrization
of 𝜑. Then for any continuous 2-form 𝜔 we have

∫
𝜑
𝜔 = ∫
�̃�
𝜔.
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2 Vector analysis on the complex plane

Proof. We may assume that 𝜔 is of the form 𝑓(𝑥, 𝑦) 𝑑𝑥 ∧ 𝑑𝑦. Then,

∫
𝜑
𝜔 = ∫
[0,1]2
𝑓(𝜑(𝑥, 𝑦)) Jac𝜑(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫
[0,1]2
𝑓(𝜑(ℎ(𝑢, 𝑣))) Jac𝜑(ℎ(𝑢, 𝑣)) Jacℎ(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

= ∫
[0,1]2
𝑓(�̃�(𝑢, 𝑣)) Jac�̃�(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

= ∫
�̃�
𝜔,

where we used the change-of-variables (𝑥, 𝑦) = ℎ(𝑢, 𝑣) and chain rule.

Let us finally note that in the plane it is also possible to directly make sense
of integrals of 2-forms instead of looking at parametrized surfaces.

Definition 2.12. Suppose that 𝑓∶ ℝ2 → ℂ is an integrable function. We then
define ∫𝑓(𝑝) 𝑑𝑥 ∧ 𝑑𝑦 ≔ ∫𝑓(𝑝) 𝑑𝑥 𝑑𝑦. ◆

The reasonwe still care about Definition 2.10 will become clear in a bit when
we consider integrals over chains and prove Stokes’ theorem.

2.3 Computing with differential forms and Wirtinger derivatives

Having defined 1-forms and 2-forms, it is useful to also define a differential
0-form on 𝑈 ⊂ ℝ2 simply as a function 𝑓∶ 𝑈 → ℂ.

Let us first extend the definition of the exterior product to include 0-forms
as well. In general if 𝛼 and𝛽 are 𝑛- and𝑚-forms, 𝛼∧𝛽will be an 𝑛+𝑚-form. In
the plane there are no non-zero 𝑛-forms for 𝑛 ≥ 3, so we only need to consider
the cases where 𝑛+𝑚 ≤ 2. Since we already defined the product of two 1-forms
𝜔1 and 𝜔2 to be given by

(𝜔1 ∧ 𝜔2)(𝑢, 𝑣) = 𝜔1(𝑢)𝜔2(𝑣) − 𝜔1(𝑣)𝜔2(𝑢) = −(𝜔2 ∧ 𝜔1)(𝑢, 𝑣),

we only need to define the products of 0-forms with either 0-, 1- or 2-forms.
In all these cases the definition is the same: If 𝑓 is a 0-form and 𝜔 is an 𝑛-form,
then

(𝑓 ∧ 𝜔)𝑝(𝑢1,… , 𝑢𝑛) = (𝜔 ∧ 𝑓)𝑝(𝑢1,… , 𝑢𝑛) = 𝑓(𝑝)𝜔(𝑢1,… , 𝑢𝑛).

In other words, wedging with 𝑓 just becomes scalar multiplication by 𝑓(𝑝).
From the definition we see in particular that ∧ distributes over addition and
that 𝜔 ∧ 𝜔 = 0 for 1-forms 𝜔. For instance,

(𝑓𝑑𝑥 + 𝑔𝑑𝑦) ∧ (𝑢𝑑𝑥 + 𝑣𝑑𝑦) ∧ 𝑝 = 𝑝(𝑓𝑣 − 𝑔𝑢)𝑑𝑥 ∧ 𝑑𝑦
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2 Vector analysis on the complex plane

for any functions (0-forms) 𝑓, 𝑔, 𝑢, 𝑣, 𝑝.
The second operation we will define is the exterior derivativewhich maps a
𝑘-form to a 𝑘 + 1-form. For a differentiable 0-form 𝑓 it is a 1-form 𝑑𝑓 defined
as the directional derivative

𝑑𝑓𝑝(𝑣) = lim𝑡→0
𝑓(𝑝 + 𝑡𝑣) − 𝑓(𝑝)

𝑡
,

where (𝑝, 𝑣) ∈ ℝ2𝑝 is a tangent vector. This means that 𝑑𝑓𝑝 can also be viewed
as the derivative of 𝑓 in the usual sense as a map ℝ2 → ℝ2, which is given by
the Jacobian matrix. In terms of 𝑑𝑥, 𝑑𝑦 we have

𝑑𝑓 = 𝜕𝑥𝑓𝑑𝑥 + 𝜕𝑦𝑓𝑑𝑦.

The derivative of a 1-form 𝜔 = 𝑓𝑑𝑥 + 𝑔𝑑𝑦 is defined by taking the derivatives
of the 0-forms 𝑓 and 𝑔 and wedging with the existing 1-forms, so that

𝑑𝜔 = (𝑑𝑓) ∧ 𝑑𝑥 + (𝑑𝑔) ∧ 𝑑𝑦

which turns out to equal

(𝜕𝑥𝑔 − 𝜕𝑦𝑓)𝑑𝑥 ∧ 𝑑𝑦.

In two dimensions the derivative of a 2-form is always 0.
An important thing to note is that the coordinates 𝑥 and 𝑦 can be viewed

as functions on ℝ2, with 𝑥(𝑢, 𝑣) = 𝑢 and 𝑦(𝑢, 𝑣) = 𝑣. Hence, 𝑑𝑥 and 𝑑𝑦 can
be viewed as the exterior derivatives of the functions 𝑥 and 𝑦, which one can
check indeed agrees with the definition given earlier. One of the main features
of differential forms is that there is nothing special about the coordinate sys-
tem (𝑥, 𝑦), and we can use other coordinates as well. As an example, we could
use polar coordinates (𝑟, 𝜃) and the formulas above still work in this new co-
ordinate system. For instance, let us check that 𝑑𝑓 = 𝜕𝑟𝑓𝑑𝑟 + 𝜕𝜃𝑓𝑑𝜃. We
have

𝜕𝑟𝑓𝑑𝑟 + 𝜕𝜃𝑓𝑑𝜃 = 𝜕𝑟𝑓(𝜕𝑥𝑟𝑑𝑥 + 𝜕𝑦𝑟𝑑𝑦) + 𝜕𝜃𝑓(𝜕𝑥𝜃𝑑𝑥 + 𝜕𝑦𝜃𝑑𝑦)
= (𝜕𝑟𝑓𝜕𝑥𝑟 + 𝜕𝜃𝑓𝜕𝑥𝜃)𝑑𝑥 + (𝜕𝑟𝑓𝜕𝑦𝑟 + 𝜕𝜃𝑓𝜕𝑦𝜃)𝑑𝑦
= 𝜕𝑥𝑓𝑑𝑥 + 𝜕𝑦𝑓𝑑𝑦 = 𝑑𝑓,

where we used the chain rule. It is also straightforward to move from one
coordinate system to another. For instance, since𝑥 = 𝑟 cos(𝜃) and𝑦 = 𝑟 sin(𝜃),
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2 Vector analysis on the complex plane

we have 𝑑𝑥 = cos(𝜃)𝑑𝑟−𝑟 sin(𝜃)𝑑𝜃 and 𝑑𝑦 = sin(𝜃)𝑑𝑟+𝑟 cos(𝜃)𝑑𝜃, and hence

𝑑𝑥 ∧ 𝑑𝑦 = (cos(𝜃)𝑑𝑟 − 𝑟 sin(𝜃)𝑑𝜃) ∧ (sin(𝜃)𝑑𝑟 + 𝑟 cos(𝜃)𝑑𝜃)
= (cos2(𝜃) + sin2(𝜃))𝑟𝑑𝑟 ∧ 𝑑𝜃 = 𝑟𝑑𝑟 ∧ 𝑑𝜃,

which is the usual area form in polar coordinates.
In fact, the formula 𝑑𝑓 = 𝜕𝑢𝑓𝑑𝑢 + 𝜕𝑣𝑓𝑑𝑣 for a general coordinate system
(𝑢, 𝑣) is such a useful mnemonic that it makes sense to look at what happens
when we express everything in terms of 𝑑𝑧 = 𝑑𝑥+ 𝑖𝑑𝑦 and 𝑑𝑧 = 𝑑𝑥− 𝑖𝑑𝑦. We
have 𝑑𝑥 = 12(𝑑𝑧 + 𝑑𝑧) and 𝑑𝑦 =

1
2𝑖(𝑑𝑧 − 𝑑𝑧) and thus

𝑑𝑓 = 𝜕𝑥𝑓𝑑𝑥 + 𝜕𝑦𝑓𝑑𝑦 =
1
2
𝜕𝑥𝑓(𝑑𝑧 + 𝑑𝑧) +

1
2𝑖
𝜕𝑦𝑓(𝑑𝑧 − 𝑑𝑧)

=
1
2
(𝜕𝑥𝑓 − 𝑖𝜕𝑦𝑓)𝑑𝑧 +

1
2
(𝜕𝑥𝑓 + 𝑖𝜕𝑦𝑓)𝑑𝑧.

It therefore makes sense to make the following definition.

Definition 2.13. The complex (or Wirtinger) derivatives 𝜕𝑧 and 𝜕𝑧 are de-
fined by

𝜕𝑧 =
1
2
(𝜕𝑥 − 𝑖𝜕𝑦) and 𝜕𝑧 =

1
2
(𝜕𝑥 + 𝑖𝜕𝑦) ◆

With these definitions we get the already familiar looking formula

𝑑𝑓 = 𝜕𝑧𝑓𝑑𝑧 + 𝜕𝑧𝑓𝑑𝑧.

It is useful to also connect differentials of functions to their differentiability.
Recall the following definition from vector analysis.

Definition 2.14. A function 𝑓∶ 𝑈 → ℂ is (real-)differentiable (or briefly, ℝ-
differentiable) at 𝑧 ∈ 𝑈 if there exists aℝ-linear functional 𝑑𝑓𝑧 ∶ ℝ2 → ℂ such
that 𝑓(𝑧 + ℎ) = 𝑓(𝑧) + 𝑑𝑓𝑧(ℎ) + 𝑜(|ℎ|) as ℝ2 ∋ ℎ → 0. ◆

Note that if 𝑓 is differentiable, then the derivative 𝑑𝑓𝑧 in the definition is
unique and agrees with the earlier definition 𝑑𝑓𝑧(𝑣) as a directional derivative.
In particular, by using the formula above, 𝑓∶ 𝑈 → ℂ is differentiable at 𝑧, if
and only if it admits a first order Taylor-expansion of the form

𝑓(𝑧 + ℎ) = 𝑓(𝑧) + 𝜕𝑧𝑓(𝑧)ℎ + 𝜕𝑧𝑓(𝑧)ℎ + 𝑜(|ℎ|).

Note on terminology: The prefix “real” in “real-differentiability” has been
added in order to distinguish the term from “complex-differentiability” that
will be defined in next chapter.

The Wirtinger derivatives and the forms 𝑑𝑧 and 𝑑𝑧 satisfy various useful
formulae.
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2 Vector analysis on the complex plane

Lemma 2.15. Let 𝑓∶ 𝑈 → ℂ be a real-differentiable function. Then

𝜕𝑧𝑓 = 𝜕𝑧𝑓 and 𝜕𝑧𝑓 = 𝜕𝑧𝑓.

Moreover, if 𝑔∶ 𝑉 → 𝑈 is real-differentiable on an open set 𝑉 ⊂ ℂ, then the
following chain rules hold:

𝜕𝑧(𝑓 ∘ 𝑔)(𝑧) = 𝜕𝑧𝑓(𝑔(𝑧)) ⋅ 𝜕𝑧𝑔(𝑧) + 𝜕𝑧𝑓(𝑔(𝑧)) ⋅ 𝜕𝑧𝑔(𝑧),
𝜕𝑧(𝑓 ∘ 𝑔)(𝑧) = 𝜕𝑧𝑓(𝑔(𝑧)) ⋅ 𝜕𝑧𝑔(𝑧) + 𝜕𝑧𝑓(𝑔(𝑧)) ⋅ 𝜕𝑧𝑔(𝑧).

Proof. Exercise.

The final operation we will look at is the pullback of forms. In the definition
below we also consider differential forms on subsets of ℝ (in the 𝑑 = 1 case).
These obey the same rules as forms on subsets ofℝ2, except that every 1-form
is of the form 𝑎 𝑑𝑥 for some function 𝑎, 𝑑𝑎 = 𝑎′(𝑥) 𝑑𝑥when 𝑎 is a differentiable
0-form, and there are no non-zero 2-forms.

Definition 2.16. Let 𝑈 ⊂ ℝ𝑑 (𝑑 = 1, 2) be open and 𝑓∶ 𝑈 → ℝ2 be a 𝐶1-
function. Suppose that 𝜔 is a differential 𝑚-form defined on 𝑉 = 𝑓(𝑈). Then
the pullback of 𝜔 is the differential𝑚-form on 𝑈 given by

(𝑓∗𝜔)𝑝(𝑣1,… , 𝑣𝑚) = 𝜔𝑓(𝑝)(𝑑𝑓𝑝(𝑣1),… , 𝑑𝑓𝑝(𝑣𝑚)). ◆

In the definition 𝑑𝑓𝑝 is interpreted as mapping the tangent vector 𝑣 at 𝑝 to
a tangent vector 𝑑𝑓𝑝(𝑣) at 𝑓(𝑝).

The definition is tailored in such a way that the earlier definitions for inte-
grals over curves and parametrized surfaces can be succinctly stated as

∫
𝛾
𝜔 = ∫

1

0
𝛾∗𝜔 and ∫

𝜑
𝜔 = ∫
[0,1]2
𝜑∗𝜔

when 𝛾∶ [0, 1] → ℂ is a 𝐶1-curve or 𝜑∶ [0, 1]2 → ℂ is a 𝐶1 parametrized
region.

Pullbacks are in fact characterized by the following recursive rules which
make computing them easy.

Lemma 2.17. Let 𝑓 be a 𝐶1-function (defined either on an open subset of ℝ or
ℂ), and 𝛼 and 𝛽 be differential forms. Then the following identities hold:

• 𝑓∗𝑔 = 𝑔 ∘ 𝑓 when 𝑔 is a 0-form

• 𝑓∗(𝛼 + 𝛽) = 𝑓∗𝛼 + 𝑓∗𝛽

• 𝑓∗(𝛼 ∧ 𝛽) = 𝑓∗𝛼 ∧ 𝑓∗𝛽
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2 Vector analysis on the complex plane

• 𝑓∗(𝑑𝛼) = 𝑑𝑓∗𝛼

Proof. Exercise.

Using the rules we may for instance compute the following useful formulas
for pullbacks under 𝑓 = 𝑢 + 𝑖𝑣:

• 𝑓∗𝑑𝑧 = 𝑑𝑓∗(𝑧 ↦ 𝑧) = 𝑑((𝑧 ↦ 𝑧) ∘ 𝑓) = 𝑑𝑓 = 𝜕𝑧𝑓𝑑𝑧 + 𝜕𝑧𝑓𝑑𝑧

• 𝑓∗𝑑𝑧 = 𝑑𝑓∗(𝑧) = 𝑑𝑓 = 𝜕𝑧𝑓𝑑𝑧 + 𝜕𝑧𝑓𝑑𝑧

• 𝑓∗(𝑑𝑥 ∧ 𝑑𝑦) = (𝜕𝑥𝑢𝜕𝑦𝑣 − 𝜕𝑦𝑢𝜕𝑥𝑣)𝑑𝑥 ∧ 𝑑𝑦 = Jac𝑓 𝑑𝑥 ∧ 𝑑𝑦

Example2.18. Wecan also leverage the calculus of differential forms to quickly
show that Jac𝑓 = |𝜕𝑧𝑓|

2 − |𝜕𝑧𝑓|2. Indeed, note that

𝑑𝑧 ∧ 𝑑𝑧 = (𝑑𝑥 + 𝑖𝑑𝑦) ∧ (𝑑𝑥 − 𝑖𝑑𝑦) = −2𝑖𝑑𝑥 ∧ 𝑑𝑦,

giving us the useful formula

𝑑𝑥 ∧ 𝑑𝑦 = 𝑖
2
𝑑𝑧 ∧ 𝑑𝑧.

Hence, we have that

Jac𝑓 𝑑𝑥 ∧ 𝑑𝑦 = 𝑓
∗(𝑑𝑥 ∧ 𝑑𝑦) = 𝑓∗ (

𝑖
2
𝑑𝑧 ∧ 𝑑𝑧) =

𝑖
2
(𝑑𝑓 ∧ 𝑑𝑓)

= 𝑖
2
(𝜕𝑧𝑓𝜕𝑧𝑓 − 𝜕𝑧𝑓𝜕𝑧𝑓)𝑑𝑧 ∧ 𝑑𝑧 = (|𝜕𝑧𝑓|2 − |𝜕𝑧𝑓|2)𝑑𝑥 ∧ 𝑑𝑦,

implying that Jac𝑓 = |𝜕𝑧𝑓|
2 − |𝜕𝑧𝑓|2. ◆

2.4 Chains and Stokes’ theorem

Our goal in this section is to prove Stokes’ theorem, which roughly speaking
says that ∫

𝑆
𝑑𝜔 = ∫

𝜕𝑆
𝜔, when 𝜔 is a 1-form, 𝑆 is a suitable region in the plane

and 𝜕𝑆 is its boundary.
The regionswewill cover are ones that can be built by using images of finitely

many squares (fancily called 2-cells).

Definition 2.19. A (𝐶1 singular)𝑛-cell (𝑛 = 1, 2) is a𝐶1map 𝐼∶ [0, 1]𝑛 → ℝ2,
while a 0-cell is a singleton map 𝐼∶ {0} → ℝ2. ◆

Thus, 0-cells can be viewed as points, 1-cells as parametrized curves and 2-
cells as parametrized regions. The integral of an 𝑛-form over an 𝑛-cell for 𝑛 =
1, 2 is defined by ∫

𝐼
𝜔 = ∫
[0,1]𝑛
𝐼∗𝜔. For a 0-cell 𝐼 we simply set ∫

𝐼
𝜔 ≔ 𝜔(𝐼(0)).
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2 Vector analysis on the complex plane

Definition 2.20. A (𝐶1 singular) 𝑛-chain 𝐶 is a finite formal linear combina-
tion of 𝑛-cells 𝐼1,… , 𝐼𝑚, i.e. 𝐶 = ∑

𝑚
𝑘=1 𝑐𝑘𝐼𝑘 for some coefficients 𝑐𝑘 ∈ ℂ. ◆

Note that the sum 𝐶 = ∑𝑚𝑘=1 𝑐𝑘𝐼𝑘 is completely formal and one should view
𝐼𝑘 as symbolic variables. (In particular, it is not the pointwise sum of func-
tions.) Typically, the coefficients 𝑐𝑘 will be integers. If 𝐶 is an 𝑛-chain, we
define

∫
𝐶
𝜔 =
𝑚

∑
𝑘=1
𝑐𝑘 ∫
𝐼𝑘
𝜔 =
𝑚

∑
𝑘=1
𝑐𝑘 ∫
[0,1]𝑛
𝐼∗𝑘𝜔

for any continuous 𝑛-form 𝜔. We also denote the empty chain 𝐶 by 0 and
define the integral over an empty chain as 0 as well.

The boundary of a 1-cell 𝐼 is a 0-chain 𝜕𝐼 given by

𝜕𝐼 = 𝐼|1 − 𝐼|0,

where 𝐼|𝑎 ∶ {0} → ℂ for 𝑎 ∈ {0, 1} is the 0-cell mapping 𝐼|𝑎(0) = 𝐼(𝑎). Similarly,
the boundary of a 2-cell 𝑆 is a 1-chain 𝜕𝑆 given by

𝜕𝑆 = 𝑆|[0,1] + 𝑆|[1,1+𝑖] − 𝑆|[𝑖,1+𝑖] − 𝑆|[0,𝑖],

where 𝑆|[𝑎,𝑏] ∶ [0, 1] → ℂ is the 1-cell mapping

𝑆|[𝑎,𝑏](𝑡) = 𝑆((1 − 𝑡)𝑎 + 𝑡𝑏).

Notice that the boundary of a 2-cell is oriented counter-clockwise. The bound-
ary operation extends linearly to 𝑛-chains.

Definition 2.21. Let 𝐶1 and 𝐶2 be two 𝑛-chains. We say that 𝐶1 and 𝐶2 are
equivalent if ∫

𝐶1
𝜔 = ∫
𝐶2
𝜔 for every continuous 𝑛-form 𝜔. ◆

In particular, a constant map [0, 1]𝑛 → ℂ for 𝑛 ≥ 1 is an 𝑛-chain con-
sisting of a single cell and equivalent to an empty chain. Note also that if we
reparametrize one of the cells 𝐼 in the chain by replacing it with 𝐼 ∘ 𝜑 for some
𝐶1 bijection 𝜑∶ [0, 1]𝑛 → [0, 1]𝑛 with positive Jacobian determinant, we get
an equivalent chain by Lemma 2.6 and Lemma 2.11.

Let us look at some important special cases. The closure of a disc 𝐵(𝑧0, 𝑟)
can be written as a 2-cell 𝑆 via the map 𝑆(𝑥, 𝑦) = 𝑧0 + 𝑥𝑟𝑒2𝜋𝑖𝑦. Note that
𝑆|[0,1] = 𝑆|[𝑖,𝑖+1] and that 𝑆|[0,𝑖] ≡ 𝑧0 is a constant map, so that 𝜕𝑆 is equivalent
to the 1-cell 𝐼(𝑡) = 𝑆|[1,1+𝑖] = 𝑧0+𝑟𝑒2𝜋𝑖𝑡, which parametrizes the circle 𝜕𝐵(𝑧0, 𝑟).
We will abuse the notation and occasionally refer to the 2-chain 𝑆 by writing
𝐵(𝑧0, 𝑟), so that for instance

∫
𝐵(𝑧0,𝑟)
𝜔 = ∫
𝑆
𝜔
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2 Vector analysis on the complex plane

and
∫
𝜕𝐵(𝑧0,𝑟)
𝜔 = ∫
𝐼
𝜔.

More generally, an annulus 𝐴(𝑧0, 𝑟, 𝑅) = {𝑧 ∈ ℂ ∶ 𝑟 < |𝑧 − 𝑧0| < 𝑅} for 0 <
𝑟 < 𝑅 can be written as a 2-cell 𝑆 via the map 𝑆(𝑥, 𝑦) = 𝑧0 +((1−𝑥)𝑟+𝑥𝑅)𝑒2𝜋𝑖𝑦
and 𝜕𝐴(𝑧0, 𝑟, 𝑅) is equivalent to 𝜕𝐵(𝑧0, 𝑅)−𝜕𝐵(𝑧0, 𝑟), when both are interpreted
as 1-chains.

The main theorem of this chapter is the following.

Theorem 2.22 (Stokes’ theorem). Let 𝐶 be an 𝑛-chain (𝑛 = 1, 2) and 𝜔 a real-
differentiable 𝑛 − 1-form such that 𝑑𝜔 is a continuous 𝑛-form. Then

∫
𝐶
𝑑𝜔 = ∫

𝜕𝐶
𝜔.

Proof. It is enough to show this in the case where 𝐶 = 𝐼, where 𝐼 is an 𝑛-cell
for 𝑛 = 1, 2. Note that in this case we have

∫
𝐶
𝑑𝜔 = ∫

𝐼
𝑑𝜔 = ∫

[0,1]𝑛
𝐼∗(𝑑𝜔) = ∫

[0,1]𝑛
𝑑𝐼∗𝜔 = ∫

[0,1]𝑛
𝑑𝛼,

where 𝛼 = 𝐼∗𝜔 is an 𝑛 − 1-form on [0, 1]𝑛.
Case 𝑛 = 1: In this case 𝛼 is just a 𝐶1-function, and we get

∫
[0,1]
𝑑𝛼 = ∫

1

0
𝛼′(𝑥) 𝑑𝑥 = 𝛼(1) − 𝛼(0) = 𝜔(𝐼(1)) − 𝜔(𝐼(0)) = ∫

𝜕𝐼
𝜔

by the fundamental theorem of calculus.
Case 𝑛 = 2: In this case we have 𝛼 = 𝑎 𝑑𝑥 + 𝑏 𝑑𝑦 for some differentiable

functions 𝑎, 𝑏 and 𝑑𝛼 = (𝜕𝑥𝑏 − 𝜕𝑦𝑎)𝑑𝑥 ∧ 𝑑𝑦, where 𝜕𝑥𝑏 − 𝜕𝑦𝑎 is continuous
by assumption. Note however that we do not know whether 𝜕𝑥𝑏 and 𝜕𝑦𝑎 are
continuous on their own, which means that we cannot simply split the integral
as a sum

∫
[0,1]2
𝑑𝛼 = ∫

1

0
∫
1

0
(−𝜕𝑦𝑎) 𝑑𝑦 𝑑𝑥 + ∫

1

0
∫
1

0
(𝜕𝑥𝑏) 𝑑𝑥 𝑑𝑦

and use the one-dimensional fundamental theorem of calculus in the inner
integrals to conclude. Instead, we are going to use an argument that is usually
used to prove a related result known as Goursat’s theorem.

Our goal is equivalent to showing that

|∫
[0,1]2
𝑑𝛼 − ∫

𝜕[0,1]2
𝛼| = 0,
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𝐼1

𝐼2
𝐼3𝑧0

𝑆1 𝑆2

𝑆3 𝑆4

Figure 2.1: Subdivision of [0, 1]2.

and we will do this by bounding the left-hand side in a clever way. Let us
split [0, 1]2 into four sub-squares 𝑆1,… , 𝑆4 of side length 1/2 (see Figure 2.1).
Each 𝑆𝑗 is a 2-cell on its own (via a map [0, 1]2 → 𝑆𝑗 which scales by 1/2 and
translates by 0 or 1/2 units in either coordinate) and we can write

∫
[0,1]2
𝑑𝛼 =

4

∑
𝑗=1
∫
𝑆𝑗
𝑑𝛼.

Notice also that the boundaries of 𝑆𝑗 which are inside [0, 1]2 cancel out each
other and hence also

∫
𝜕[0,1]2
𝛼 =
4

∑
𝑗=1
∫
𝜕𝑆𝑗
𝛼.
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Let now 𝐼1 = 𝑆𝑗 be a sub-square for which

|∫
𝑆𝑗
𝑑𝛼 − ∫

𝜕𝑆𝑗
𝛼|

is maximal. By the triangle inequality we then get the bound

|∫
[0,1]2
𝑑𝛼 − ∫

𝜕[0,1]2
𝛼| ≤ 4 |∫

𝐼1
𝑑𝛼 − ∫

𝜕𝐼1
𝛼| .

We can now continue subdividing inductively. Suppose that we have already
defined 𝐼𝑘 and showed the bound

|∫
[0,1]2
𝑑𝛼 − ∫

𝜕[0,1]2
𝛼| ≤ 4𝑘 |∫

𝐼𝑘
𝑑𝛼 − ∫

𝜕𝐼𝑘
𝛼| .

We can then again divide 𝐼𝑘 into four sub-squares 𝑆(𝑘)𝑗 and choose 𝐼𝑘+1 to be a
one for which

|∫
𝑆(𝑘)𝑗
𝑑𝛼 − ∫

𝜕𝑆(𝑘)𝑗
𝛼|

is maximal. We then get the bound

|∫
[0,1]2
𝑑𝛼 − ∫

𝜕[0,1]2
𝛼| ≤ 4𝑘 |∫

𝐼𝑘
𝑑𝛼 − ∫

𝜕𝐼𝑘
𝛼| ≤ 4𝑘+1 |∫

𝐼𝑘+1
𝑑𝛼 − ∫

𝜕𝐼𝑘+1
𝛼| .

This process gives us a decreasing sequence [0, 1]2 ⊃ 𝐼1 ⊃ 𝐼2 ⊃ … of closed
squares 𝐼𝑘 with side-length 2−𝑘, whose intersection is a single point 𝑧0 = 𝑥0 +
𝑖𝑦0 ∈ [0, 1]2. We will next use the real-differentiability of 𝛼 at 𝑧0 to conclude.
Let us write 𝐼𝑘 = [𝑥𝑘,0, 𝑥𝑘,1] × [𝑦𝑘,0, 𝑦𝑘,1], use 𝑧 = 𝑥 + 𝑖𝑦 as our variable of
integration, and note that for any 𝑘 ≥ 1 we have

∫
𝜕𝐼𝑘
𝛼 = ∫
𝜕𝐼𝑘
(𝑎 𝑑𝑥 + 𝑏 𝑑𝑦)

= ∫
𝜕𝐼𝑘
(𝑎(𝑧0) + 𝜕𝑥𝑎(𝑧0)(𝑥 − 𝑥0) + 𝜕𝑦𝑎(𝑧0)(𝑦 − 𝑦0) + 𝑜𝑧→𝑧0 (|𝑧 − 𝑧0|)) 𝑑𝑥

+ ∫
𝜕𝐼𝑘
(𝑏(𝑧0) + 𝜕𝑥𝑏(𝑧0)(𝑥 − 𝑥0) + 𝜕𝑦𝑏(𝑧0)(𝑦 − 𝑦0) + 𝑜𝑧→𝑧0 (|𝑧 − 𝑧0|)) 𝑑𝑦

= 2−𝑘𝜕𝑦𝑎(𝑧0)(𝑦𝑘,0 − 𝑦𝑘,1) + 2−𝑘𝜕𝑥𝑏(𝑧0)(𝑥𝑘,1 − 𝑥𝑘,0) + 𝑜𝑘→∞(4−𝑘)

= 4−𝑘(𝜕𝑥𝑏(𝑧0) − 𝜕𝑦𝑎(𝑧0)) + 𝑜𝑘→∞(4−𝑘),

since ∫
𝜕𝐼𝑘
𝑓(𝑥) 𝑑𝑥 = ∫

𝜕𝐼𝑘
𝑓(𝑦) 𝑑𝑦 = 0 for any continuous function 𝑓∶ ℝ → ℂ.
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2 Vector analysis on the complex plane

We can also compute

∫
𝐼𝑘
𝑑𝛼 = ∫

𝐼𝑘
(𝜕𝑥𝑏(𝑧) − 𝜕𝑦𝑎(𝑧)) 𝑑𝑥 𝑑𝑦

= ∫
𝐼𝑘
(𝜕𝑥𝑏(𝑧0) − 𝜕𝑦𝑎(𝑧0) + 𝑜𝑧→𝑧0 (1)) 𝑑𝑥 𝑑𝑦

= 4−𝑘(𝜕𝑥𝑏(𝑧0) − 𝜕𝑦𝑎(𝑧0)) + 𝑜𝑘→∞(4−𝑘).

Therefore,

|∫
[0,1]2
𝑑𝛼 − ∫

𝜕[0,1]2
𝛼| ≤ 4𝑘 |∫

𝐼𝑘
𝑑𝛼 − ∫

𝜕𝐼𝑘
𝛼| ≤ 4𝑘 ⋅ 𝑜𝑘→∞(4−𝑘) → 0

as 𝑘 → ∞.
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Holomorphic functions

3.1 Complex differentiability

From now on, 𝑈 ⊂ ℂ will always be an open set.

Definition 3.1. A function 𝑓∶ 𝑈 → ℂ is complex-differentiable (or briefly,
ℂ-differentiable) at 𝑧 ∈ 𝑈 if the limit

𝑓′(𝑧) ≔ lim
ℎ→0

𝑓(𝑧 + ℎ) − 𝑓(𝑧)
ℎ

exists. We call 𝑓′(𝑧) the derivative of 𝑓 at 𝑧 ∈ ℂ. ◆
In the definition above it is crucial that ℎ ∈ ℂ ⧵ {0} is allowed to approach 0

in any manner! Formally, 𝑓′(𝑧) = 𝑤 if for every 𝜀 > 0 there exists 𝛿 > 0 such
that for any ℎ ∈ ℂ with 0 < |ℎ| < 𝛿 we have |𝑓(𝑧+ℎ)−𝑓(𝑧)ℎ − 𝑤| < 𝜀.

Note on terminology: If we say that a map is 𝐶1, we mean that its partial
derivatives exist and are continuous, which in turn implies ℝ-differentiability
but not necessarilyℂ-differentiability. The notation 𝑓′ is reserved for limits of
difference quotients of the form (𝑓(𝑧 + ℎ) − 𝑓(𝑧))/ℎ, and applies to functions
ℂ → ℂ (where ℎ ∈ ℂ) orℝ → ℂ (where ℎ ∈ ℝ), where the latter case ismainly
used for curves. In other cases we will use the partial derivative notation 𝜕𝑥
etc., or the total derivative 𝑑𝑓𝑧 at 𝑧, which is a ℝ-linear map 𝑑𝑓𝑧 ∶ ℂ → ℂ as
in Definition 2.14 and also coincides with the exterior derivative of 𝑓.

Example 3.2. (i) The function 𝑓(𝑧) = 𝑧 is everywhere ℂ-differentiable with
𝑓′(𝑧) = 1 since (𝑧+ℎ)−𝑧ℎ = 1 for all ℎ ∈ ℂ.

(ii) An important counter-example is the function 𝑓(𝑧) = 𝑧 for which

(𝑧 + ℎ) − 𝑧
ℎ
=
ℎ
ℎ

does not have a limit as ℎ → 0.
(iii) The difference quotient of the function |𝑧|2 is

|𝑧 + ℎ|2 − |𝑧|2

ℎ
= |𝑧|
2 + |ℎ|2 + 𝑧ℎ + 𝑧ℎ − |𝑧|2

ℎ
= |ℎ|
2

ℎ
+ 𝑧ℎ
ℎ
+ 𝑧,

which has a limit as ℎ → 0 if and only if 𝑧 = 0. ◆
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3 Holomorphic functions

Let us begin by connecting complex differentiability to theWirtinger deriva-
tives defined earlier.

Theorem 3.3. Suppose that 𝑓∶ 𝑈 → ℂ is ℂ-differentiable at 𝑧 ∈ 𝑈. Then 𝑓
is ℝ-differentiable at 𝑧, 𝑓′(𝑧) = 𝜕𝑧𝑓(𝑧) and 𝜕𝑧𝑓(𝑧) = 0. Conversely, if 𝑓 is
ℝ-differentiable at 𝑧 and 𝜕𝑧𝑓(𝑧) = 0, then 𝑓 is ℂ-differentiable at 𝑧.

Proof. Suppose first that 𝑓 is ℂ-differentiable at 𝑧. Then we have

lim
ℎ→0

𝑓(𝑧 + ℎ) − 𝑓(𝑧) − 𝑓′(𝑧)ℎ
ℎ

= 0,

meaning that
𝑓(𝑧 + ℎ) − 𝑓(𝑧) − 𝑓′(𝑧)ℎ = 𝑜(|ℎ|)

as ℎ → 0. Thus, the expansion in Definition 2.14 holds with 𝑑𝑓𝑧(ℎ) = 𝑓′(𝑧)ℎ
and 𝑓 is ℝ-differentiable at 𝑧. Since 𝑑𝑓𝑧(ℎ) = 𝜕𝑧𝑓(𝑧)ℎ + 𝜕𝑧𝑓(𝑧)ℎ = 𝑓′(𝑧)ℎ
has to hold for every ℎ ∈ ℂ, we see by equating the coefficients of ℎ and ℎ that
𝜕𝑧𝑓(𝑧) = 𝑓′(𝑧) and 𝜕𝑧𝑓(𝑧) = 0.

Conversely, if 𝑓 is ℝ-differentiable at 𝑧 and 𝜕𝑧𝑓(𝑧) = 0, the expansion

𝑓(𝑧 + ℎ) = 𝑓(𝑧) + 𝜕𝑧𝑓(𝑧)ℎ + 𝜕𝑧𝑓(𝑧)ℎ + 𝑜(|ℎ|) = 𝑓(𝑧) + 𝜕𝑧𝑓(𝑧)ℎ + 𝑜(|ℎ|)

holds and hence
lim
ℎ→0

𝑓(𝑧 + ℎ) − 𝑓(𝑧)
ℎ

= 𝜕𝑧𝑓(𝑧).

Remark. In particular, one can check that 𝑓 isℂ-differentiable at 𝑧 if and only
if we have the expansion

𝑓(𝑧 + ℎ) = 𝑓(𝑧) + 𝑑𝑓𝑧(ℎ) + 𝑜(|ℎ|),

withℂ-linear 𝑑𝑓𝑧, which also fits the term ‘ℂ-differentiable’, since in ordinary
(ℝ-)differentiability we just required 𝑑𝑓𝑧 to be ℝ-linear. ◆

Derivatives of complex functions satisfy many familiar calculus rules.

Theorem 3.4. Let 𝑓 and 𝑔 be ℂ-differentiable at 𝑧. Then

• 𝑓 + 𝑔 is ℂ-differentiable at 𝑧 with

(𝑓 + 𝑔)′(𝑧) = 𝑓′(𝑧) + 𝑔′(𝑧),

• 𝑓 ⋅ 𝑔 is ℂ-differentiable at 𝑧 with

(𝑓 ⋅ 𝑔)′(𝑧) = 𝑓′(𝑧)𝑔(𝑧) + 𝑔′(𝑧)𝑓(𝑧), and
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• if 𝑔(𝑧) ≠ 0, then 𝑓𝑔 is ℂ-differentiable at 𝑧 with

(
𝑓
𝑔
)
′
(𝑧) = 𝑓

′(𝑧)𝑔(𝑧) − 𝑔′(𝑧)𝑓(𝑧)
𝑔(𝑧)2

.

Moreover, if 𝑓 is ℂ-differentiable at 𝑤, 𝑔 is ℂ-differentiable at 𝑧 and 𝑔(𝑧) = 𝑤,
then 𝑓 ∘ 𝑔 is ℂ-differentiable at 𝑧 with

(𝑓 ∘ 𝑔)′(𝑧) = 𝑓′(𝑔(𝑧))𝑔′(𝑧) = 𝑓′(𝑤)𝑔′(𝑧).

Proof. Let us leave the quotient rule as an exercise.
One can prove the rules directly fromDefinition 3.1 basically word-by-word

as they are shown for functions ℝ → ℝ in basic analysis courses.
For instance, the sum rule is straightforward, 𝑓+𝑔 isℂ-differentiable since

(𝑓 + 𝑔)(𝑧 + ℎ) − (𝑓 + 𝑔)(𝑧)
ℎ

= 𝑓(𝑧 + ℎ) − 𝑓(𝑧)
ℎ

+ 𝑔(𝑧 + ℎ) − 𝑔(𝑧)
ℎ

,

which tends to 𝑓′(𝑧) + 𝑔′(𝑧) as ℎ → 0. Similarly, for products, we may write

𝑓(𝑧 + ℎ−)𝑔(𝑧 + ℎ) − 𝑓(𝑧)𝑔(𝑧)
ℎ

= (𝑓(𝑧 + ℎ) − 𝑓(𝑧))𝑔(𝑧 + ℎ) + (𝑔(𝑧 + ℎ) − 𝑔(𝑧))𝑓(𝑧)
ℎ

,

which tends to 𝑓′(𝑧)𝑔(𝑧) + 𝑔′(𝑧)𝑓(𝑧).
For the chain rule, we could again mimic the proof for real-valued func-

tions, but let us use the general chain-rule for ℝ-differentiable functions in-
stead. Since 𝑓 and 𝑔 are ℂ-differentiable, they are also ℝ-differentiable, and
We have

𝑑(𝑓 ∘ 𝑔)𝑧(ℎ) = (𝑑𝑓𝑔(𝑧) ∘ 𝑑𝑔𝑧)(ℎ).

By ℂ-differentiability, 𝑑𝑔𝑧(ℎ) = 𝑔′(𝑧)ℎ and 𝑑𝑓𝑔(𝑧)(ℎ) = 𝑓′(𝑔(𝑧))ℎ for all ℎ ∈
ℂ, and hence

𝑑(𝑓 ∘ 𝑔)𝑧(ℎ) = 𝑑𝑓𝑔(𝑧)(𝑔′(𝑧)ℎ) = 𝑓′(𝑔(𝑧))𝑔′(𝑧)ℎ.

Thus, 𝑑(𝑓 ∘ 𝑔)𝑧 is ℂ-linear and hence 𝑓 ∘ 𝑔 is ℂ-differentiable with derivative
𝑓′(𝑔(𝑧))𝑔′(𝑧).

Complex-differentiability at a single point is still a fairly weak condition, but
if a function is complex-differentiable in an open set, it becomes actually a very
strong condition with profound consequences as we shall see later on.
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Definition 3.5. A function 𝑓∶ 𝑈 → ℂ is called holomorphic in 𝑈 if it is ℂ-
differentiable at every 𝑧 ∈ 𝑈. ◆

Example 3.6. From Theorem 3.4 it easily follows that polynomials 𝑓(𝑧) =
𝑎𝑛𝑧𝑛 + ⋯ + 𝑎1𝑧 + 𝑎0, 𝑎0,… , 𝑎𝑛 ∈ ℂ, are holomorphic on the whole com-
plex plane. Rational functions 𝑓(𝑧)/𝑔(𝑧) where 𝑓 and 𝑔 are polynomials are
also holomorphic in the open set {𝑧 ∈ ℂ ∶ 𝑔(𝑧) ≠ 0}. ◆

Theorem 3.7.The functions exp, cos and sin are holomorphic in ℂ and exp′ =
exp, cos′ = − sin, sin′ = cos.

Proof. Let us start with exp. Note that by Theorem 1.20 and Theorem 1.19 we
have that

exp(𝑧) = exp(𝑥 + 𝑖𝑦) = exp(𝑥) exp(𝑖𝑦) = exp(𝑥)(cos(𝑦) + 𝑖 sin(𝑦))

for every 𝑥, 𝑦 ∈ ℝ, 𝑧 = 𝑥 + 𝑖𝑦. In particular, note that exp(𝑧) is 𝐶1, since
exp, cos, sin ∶ ℝ → ℝ are. Thus,

𝜕𝑥 exp(𝑧) = exp(𝑥)(cos(𝑦) + 𝑖 sin(𝑦)) = exp(𝑧)

and
𝜕𝑦 exp(𝑧) = exp(𝑥)(− sin(𝑦) + 𝑖 cos(𝑦)) = 𝑖 exp(𝑧).

Since exp is𝐶1, it isℝ-differentiable, andwemoreover have 𝜕𝑧 exp(𝑧) =
1
2(𝜕𝑥−

𝑖𝜕𝑦) exp(𝑧) = exp(𝑧) and 𝜕𝑧 exp(𝑧) =
1
2(𝜕𝑥+𝑖𝜕𝑦) exp(𝑧) = 0, implying that exp

is ℂ-differentiable and exp′ = exp.
The functions cos and sin can be handled by noting that cos(𝑧) = (exp(𝑖𝑧) +

exp(−𝑖𝑧))/2 and sin(𝑧) = (exp(𝑖𝑧) − exp(−𝑖𝑧))/(2𝑖).

Theorem 3.8.The principal branch of the logarithm Log is holomorphic in ℂ ⧵
(−∞, 0] and Log′(𝑧) = 1/𝑧.

Proof. Recall that Log(𝑟𝑒𝑖𝜃) = log(𝑟) + 𝑖𝜃 when 𝜃 ∈ (−𝜋, 𝜋). Thus, Log yields
a bijection between ℂ ⧵ (−∞, 0] and the strip {𝑧 ∈ ℂ ∶ Im(𝑧) ∈ (−𝜋, 𝜋)}, and
we have (exp ∘ Log)(𝑧) = 𝑧 for 𝑧 ∈ ℂ⧵ (−∞, 0]. Since exp is differentiable with
exp′(𝑧) = exp(𝑧) ≠ 0, we have by the inverse function theorem that Log is
ℝ-differentiable and thus by the chain rule for any ℎ ∈ ℂ,

ℎ = 𝑑(exp ∘ Log)𝑧(ℎ) = exp(Log(𝑧))𝑑Log𝑧(ℎ) = 𝑧𝑑Log𝑧(ℎ),

so that 𝑑Log𝑧(ℎ) = ℎ/𝑧, which implies that 𝜕𝑧 Log(𝑧) = 1/𝑧 and 𝜕𝑧 Log(𝑧) =
0.

Let us end this section by studying complex-differentiability in the (𝑥, 𝑦)
coordinates. Suppose that 𝑓 is ℝ-differentiable at 𝑧 and let 𝑢 = Re(𝑓) and
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𝑣 = Im(𝑓). The condition 𝜕𝑧𝑓(𝑧) = 0 is equivalent with

0 = 1
2
(𝜕𝑥𝑢 + 𝑖𝜕𝑦𝑢) +

𝑖
2
(𝜕𝑥𝑣 + 𝑖𝜕𝑦𝑣)

= 1
2
(𝜕𝑥𝑢 − 𝜕𝑦𝑣) +

𝑖
2
(𝜕𝑦𝑢 + 𝜕𝑥𝑣).

Looking separately at the real and imaginary parts of this equation gives us the
so-called Cauchy–Riemann equations.

Definition 3.9. Functions 𝑢, 𝑣∶ 𝑈 → ℝ satisfy the Cauchy–Riemann equa-
tions at the point 𝑧 = (𝑥, 𝑦) ∈ 𝑈 if

𝜕𝑥𝑢(𝑥, 𝑦) = 𝜕𝑦𝑣(𝑥, 𝑦) and 𝜕𝑦𝑢(𝑥, 𝑦) = −𝜕𝑥𝑣(𝑥, 𝑦). ◆

We can also go from Cauchy–Riemann equations back to complex differen-
tiability.

Theorem 3.10. If 𝑢, 𝑣∶ 𝑈 → ℝ are ℝ-differentiable and satisfy the Cauchy–
Riemann equations at 𝑧 ∈ 𝑈, then 𝑓 = 𝑢 + 𝑖𝑣 is ℂ-differentiable at 𝑧.

Proof. As 𝑢 and 𝑣 are ℝ-differentiable at 𝑧, so is 𝑓 = 𝑢 + 𝑖𝑣. Since 𝑢 and
𝑣 satisfy the Cauchy–Riemann equations we have 𝜕𝑧𝑓(𝑧) = 0 and the claim
follows from Theorem 3.3.

Cauchy–Riemann equations can be used to solve 𝑢 given 𝑣 or 𝑣 given 𝑢.

Example 3.11. Suppose that 𝑓 = 𝑢 + 𝑖𝑣 is a holomorphic function inℂ whose
real part 𝑢 equals

𝑢(𝑥, 𝑦) = 𝑥2 + 2𝑥 + 1 − 𝑦2.

What is the imaginary part of 𝑓? To find 𝑣, we can solve the Cauchy–Riemann
equations

𝜕𝑦𝑣(𝑥, 𝑦) = 𝜕𝑥𝑢(𝑥, 𝑦) = 2𝑥 + 2
𝜕𝑥𝑣(𝑥, 𝑦) = −𝜕𝑦𝑢(𝑥, 𝑦) = 2𝑦.

Integrating the first equation with respect to 𝑦 tells us that

𝑣(𝑥, 𝑦) = 2𝑥𝑦 + 2𝑦 + 𝐶(𝑥),

where 𝐶(𝑥) is some constant of integration depending on 𝑥. Similarly, inte-
grating the second equation with respect to 𝑥 gives us

𝑣(𝑥, 𝑦) = 2𝑥𝑦 + 𝐷(𝑦)

where 𝐷(𝑦) is some constant depending on 𝑦. Combining the two equations,
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we must have
2𝑥𝑦 + 2𝑦 + 𝐶(𝑥) = 2𝑥𝑦 + 𝐷(𝑦),

which implies that 𝐶(𝑥) = 𝐷(𝑦) − 2𝑦. Since the right-hand side does not
depend on 𝑥, 𝐶(𝑥) = 𝐶 has to be a (real) constant. Thus,

𝑣(𝑥, 𝑦) = 2𝑥𝑦 + 2𝑦 + 𝐶,

and in total, we have

𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥 + 1 − 𝑦2 + 𝑖(2𝑥𝑦 + 2𝑦 + 𝐶)

for some arbitrary constant 𝐶 ∈ ℝ. We can also write this in terms of 𝑧 by
noting that 𝑥 = (𝑧 + 𝑧)/2 and 𝑦 = (𝑧 − 𝑧)/(2𝑖), which we can substitute to get

𝑓(𝑧) = (
𝑧 + 𝑧
2
)
2
+ 2 ⋅ 𝑧 + 𝑧
2
+ 1 − (
𝑧 − 𝑧
2𝑖
)
2

+ 𝑖 (2 ⋅ 𝑧 + 𝑧
2
⋅ 𝑧 − 𝑧
2𝑖
+ 2 ⋅ 𝑧 − 𝑧
2𝑖
+ 𝐶)

= 𝑧
2 + 𝑧2 + 2|𝑧|2

4
+ 𝑧 + 𝑧 + 1 + 𝑧

2 + 𝑧2 − 2|𝑧|2

4
+ 𝑧
2 − 𝑧2

2
+ 𝑧 − 𝑧 + 𝑖𝐶

= 𝑧2 + 2𝑧 + 1 + 𝑖𝐶 = (1 + 𝑧)2 + 𝑖𝐶. ◆

3.2 Contour integrals of holomorphic functions

Definition 3.12. A contour in 𝑈 is a 1-chain 𝛾 = 𝛾1 + ⋯ + 𝛾𝑛 consisting
of finitely many 𝐶1-curves 𝛾𝑘 ∶ [0, 1] → 𝑈 such that 𝛾𝑘(1) = 𝛾𝑘+1(0) for all
1 ≤ 𝑘 ≤ 𝑛 − 1. We also define the piecewise 𝐶1 parametrization 𝛾(𝑡) for
𝑡 ∈ [0, 1] by setting

𝛾(𝑡) ≔ 𝛾𝑘(𝑡 − (𝑘 − 1)/𝑛)

for 1 ≤ 𝑘 ≤ 𝑛 and 𝑡 ∈ [(𝑘 − 1)/𝑛, 𝑘/𝑛]. A contour 𝛾 with 𝛾(0) = 𝛾(1) is called
closed. ◆

Our goal in this section is to consider integrals of the form

∫
𝛾
𝑓(𝑧) 𝑑𝑧

for a holomorphic function 𝑓 and contour 𝛾. We begin with the following
analogue of the fundamental theorem of calculus.

Theorem 3.13. Let 𝛾 be a contour in 𝑈 and let 𝑓 be a holomorphic function in
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𝑈 such that 𝑓′ is continuous1. Then we have

∫
𝛾
𝑓′(𝑧) 𝑑𝑧 = 𝑓(𝛾(1)) − 𝑓(𝛾(0)).

Proof. Since 𝑓 is holomorphic, we have 𝜕𝑧𝑓(𝑧) = 0 for 𝑧 ∈ 𝑈, and hence
𝑑𝑓 = 𝜕𝑧𝑓(𝑧) 𝑑𝑧 + 𝜕𝑧𝑓(𝑧) 𝑑𝑧 = 𝑓′(𝑧) 𝑑𝑧. By Stokes’ theorem we get

∫
𝛾
𝑓′(𝑧) 𝑑𝑧 = ∫

𝛾
𝑑𝑓 = ∫

𝜕𝛾
𝑓 = 𝑓(𝛾(1)) − 𝑓(𝛾(0)).

Let us next compute an important example to get some hands-on feeling for
contour integrals.

Lemma 3.14. For any 𝑧0 ∈ ℂ, 𝑛 ∈ ℤ and 𝑟 > 0 we have

∫
𝜕𝐵(𝑧0,𝑟)
(𝑧 − 𝑧0)𝑛 𝑑𝑧 = {

2𝜋𝑖, if 𝑛 = −1
0, otherwise

Proof. By the change of variables 𝑤 = 𝑧 − 𝑧0 we have 𝑑𝑤 = 𝑑𝑧 and

∫
𝜕𝐵(𝑧0,𝑟)
(𝑧 − 𝑧0)𝑛 𝑑𝑧 = ∫

𝜕𝐵(0,𝑟)
𝑧𝑛 𝑑𝑧.

If 𝑛 ≠ −1 then 𝑧𝑛 has the antiderivative 𝑧
𝑛+1

𝑛+1 which is holomorphic in the punc-
tured planeℂ ⧵ {0} (or evenℂ in the case 𝑛 ≥ 0, but we don’t need this). Since
the contour 𝛾(𝑡) = 𝑟𝑒2𝜋𝑖𝑡 lies inside ℂ ⧵ {0}, we see that

∫
𝜕𝐵(0,𝑟)
𝑧𝑛 𝑑𝑧 = (𝛾(1))

𝑛+1

𝑛 + 1
− (𝛾(0))

𝑛+1

𝑛 + 1
= 0.

If 𝑛 = −1, then 𝑧−1 has locally antiderivative log(𝑧), but it cannot be defined
as a single-valued function in ℂ ⧵ {0}: for instance the principal branch Log is
defined only on ℂ ⧵ (−∞, 0], and since 𝜕𝐵(0, 𝑟) crosses the negative real axis
the argument we used above for 𝑛 ≠ −1 fails (as it should, since the answer in
this case is not 0). We will therefore compute the integral directly. Note that
𝛾′(𝑡) = 2𝜋𝑖𝑟𝑒2𝜋𝑖𝑡. We thus have

∫
𝛾
𝑧−1 𝑑𝑧 = ∫

1

0

𝛾′(𝑡)
𝛾(𝑡)
𝑑𝑡 = ∫

1

0

2𝜋𝑖𝑟𝑒2𝜋𝑖𝑡

𝑟𝑒2𝜋𝑖𝑡
𝑑𝑡 = 2𝜋𝑖.

Remark. We could have also proven the 𝑛 = −1 case by using Log as an an-

1Assuming continuity of 𝑓′ is in fact redundant, since we will later on see that holomorphic
functions are smooth.
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tiderivative and integrating along 𝛾(𝑡) = 𝑟𝑒2𝜋𝑖(1−𝜀)(𝑡−1/2) (𝑡 ∈ [0, 1]) for some
small 𝜀 > 0. Notice that we have cut out a small arc of the circle so that the
resulting curve does not cross the negative real axis. The integral then equals

∫
𝛾
𝑧−1 𝑑𝑧 = Log(𝑟𝑒𝜋𝑖(1−𝜀)) − Log(𝑟𝑒−𝜋𝑖(1−𝜀)) = 2𝜋𝑖(1 − 𝜀)

and tends to 2𝜋𝑖 as 𝜀 → 0. ◆
Above we saw that the value of the integral ∫

𝛾
𝑓′(𝑧) 𝑑𝑧 only depends on the

endpoints of 𝛾. Here we assumed that we are integrating the derivative of a
holomorphic function, but our main goal in this section is to show that also in
general ∫

𝛾
𝑓(𝑧) 𝑑𝑧 does not change if we move 𝛾 in a continuous manner while

keeping the endpoints of 𝛾 fixed. The technical term for such a deformation is
‘homotopy’.

Definition 3.15. Let 𝛼 and𝛽 be two contours in𝑈with 𝛼(0) = 𝛽(0) and 𝛼(1) =
𝛽(1). Then 𝛼 and 𝛽 are homotopic in 𝑈 if there exists a continuous function
𝐻∶ [0, 1]2 → 𝑈 such that

𝐻(⋅, 0) = 𝛼(⋅)
𝐻(⋅, 1) = 𝛽(⋅)
𝐻(0, ⋅) = 𝛼(0) = 𝛽(0)
𝐻(1, ⋅) = 𝛼(1) = 𝛽(1). ◆

Theorem 3.16. Let𝑈 be a convex open set and let 𝛼 and 𝛽 be two contours in𝑈
with common endpoints. Then 𝛼 and 𝛽 are homotopic in 𝑈.

Proof. We may define the linear interpolation 𝐻(𝑥, 𝑡) = (1 − 𝑡)𝛼(𝑥) + 𝑡𝛽(𝑥)
for 𝑥, 𝑡 ∈ [0, 1] between the two contours. It is clearly continuous and fixes the
endpoints. By convexity𝐻([0, 1]2) ⊂ 𝑈.

The proof of the following theorem essentially says that one can from the
existence of a continuous homotopy of contours also deduce the existence of
a nice piecewise 𝐶1 homotopy. For our purposes it is convenient to state the
theorem in terms of chains.

Theorem 3.17. Let 𝛼 and 𝛽 be two contours in 𝑈 with common endpoints and
homotopic to each other in 𝑈. Then there exists a 2-chain in 𝑈 whose boundary
is equivalent to the 1-chain 𝛼 − 𝛽.

Proof. Let 𝐻 be a homotopy between 𝛼 and 𝛽 in 𝑈. Suppose that 𝛼 consists
of 𝑛 arcs (1-cells) and 𝛽 of 𝑚 arcs, so that 𝑡 ↦ 𝛼(𝑡) is 𝐶1 when restricted to a
subinterval of the form [(𝑗 − 1)/𝑛, 𝑗/𝑛] for 1 ≤ 𝑗 ≤ 𝑛 and 𝑡 ↦ 𝛽(𝑡) is 𝐶1 when
restricted to [(𝑗 − 1)/𝑚, 𝑗/𝑚] for 1 ≤ 𝑗 ≤ 𝑚. By uniform continuity, we can
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𝛼

𝛽

𝛼

𝛽

original homotopy approximation as a 2-chain

Figure 3.1: Constructing an approximative piecewise 𝐶1 homotopy.

choose an integer𝑁which is a multiple of 𝑛𝑚 and so large that for 𝛿 = 1/𝑁we
have |𝐻(𝑧) − 𝐻(𝑤)| ≤ 𝑟 for some fixed 0 < 𝑟 < dist(𝐻([0, 1]2), 𝜕𝑈) whenever
|𝑧−𝑤| ≤ √2𝛿. (Here dist(𝐻([0, 1]2), 𝜕𝑈) = ∞ if 𝜕𝑈 = ∅.) Now, the idea of the
rest of the proof is as follows: We divide [0, 1]2 into𝑁×𝑁 squares of side length
𝛿, and then define 2-cells corresponding to the small squares by requiring that
the boundaries in the interior of [0, 1]2 map to line segments whose endpoints
are given by the values of the original homotopy𝐻, see Figure 3.1.

More precisely, let us define first 1-cells 𝐼𝑗,𝑘 ∶ [0, 1] → ℂ (1 ≤ 𝑗 ≤ 𝑁, 0 ≤
𝑘 ≤ 𝑁) by setting

𝐼𝑗,0(𝑥) = 𝛼((𝑗 − 1 + 𝑥)/𝑁), 𝐼𝑗,𝑁(𝑥) = 𝛽((𝑗 − 1 + 𝑥)/𝑁)

and via horizontal linear interpolation

𝐼𝑗,𝑘(𝑥) = (1 − 𝑥)𝐻((𝑗 − 1)/𝑁 + 𝑖𝑘/𝑁) + 𝑥𝐻(𝑗/𝑁 + 𝑖𝑘/𝑁)

when 1 ≤ 𝑘 ≤ 𝑁−1. Note that since𝑁 is a multiple of 𝑛 and𝑚, each 𝐼𝑗,𝑘 is 𝐶1.
Using next linear interpolation in the vertical direction we define a 2-chain
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𝑆 = ∑𝑁𝑗,𝑘=1 𝑆𝑗,𝑘 with𝑁2 2-cells 𝑆𝑗,𝑘 ∶ [0, 1]2 → ℂ, 1 ≤ 𝑗, 𝑘 ≤ 𝑁, given by

𝑆𝑗,𝑘(𝑥 + 𝑖𝑦) = (1 − 𝑦)𝐼𝑗,𝑘−1(𝑥) + 𝑦𝐼𝑗,𝑘(𝑥).

Notice that every point 𝑧 ∈ 𝑆𝑗,𝑘([0, 1]2) is a convex combination of at most 4
points of 𝐻([0, 1]2) with distance at most 𝑟 from each other. It follows that
dist(𝑧,𝐻([0, 1]2)) ≤ 𝑟 and hence 𝑆𝑗,𝑘([0, 1]2) ⊂ 𝑈.

It remains to compute the boundary of 𝑆. By definition the right boundary
of 𝑆𝑗,𝑘 and the left boundary of 𝑆𝑗+1,𝑘 cancel each other for 1 ≤ 𝑗 ≤ 𝑁 − 1 and
1 ≤ 𝑘 ≤ 𝑁, and similarly the top boundary of 𝑆𝑗,𝑘 and the bottom boundary of
𝑆𝑗,𝑘+1 cancel for 1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝑁 − 1. Moreover, since𝐻(0, 𝑦) = 𝛼(0)
and 𝐻(1, 𝑦) = 𝛼(1) are constant in 𝑦, also the left boundary of 𝑆0,𝑘 and the
right boundary of 𝑆𝑛,𝑘 are constant curves for 1 ≤ 𝑘 ≤ 𝑛 and thus equivalent to
0 as 1-chains. Hence, the boundary of 𝑆 is equivalent to∑𝑁𝑗=1(𝐼𝑗,0 − 𝐼𝑗,𝑛) which
in turn is equivalent to 𝛼 − 𝛽.

As an application we may prove the following.

Theorem 3.18. Suppose that 𝛼 and 𝛽 are contours with common endpoints and
homotopic in𝑈. Then for any differentiable 1-form 𝜔 in𝑈 with 𝑑𝜔 = 0 we have

∫
𝛼
𝜔 = ∫
𝛽
𝜔.

Proof. ByTheorem 3.17 there exists a 2-chain 𝑆 in𝑈with boundary equivalent
to 𝛼 − 𝛽. By Stokes’ theorem (Theorem 2.22) we have

0 = ∫
𝑆
𝑑𝜔 = ∫

𝜕𝑆
𝜔 = ∫
𝛼
𝜔 − ∫
𝛽
𝜔.

As an important corollary we have the following.

Theorem 3.19. Let 𝛼 and 𝛽 be two contours with common endpoints and homo-
topic in 𝑈. Then for any holomorphic function 𝑓∶ 𝑈 → ℂ we have

∫
𝛼
𝑓(𝑧) 𝑑𝑧 = ∫

𝛽
𝑓(𝑧) 𝑑𝑧.

Proof. Since 𝑓 is holomorphic, it is real-differentiable and 𝜕𝑧𝑓(𝑧) = 0 for 𝑧 ∈
𝑈. Thus, we have 𝑑(𝑓 𝑑𝑧) = 𝜕𝑧𝑓𝑑𝑧 ∧ 𝑑𝑧 = 0 and the result follows from
Theorem 3.18.

It is useful to also consider homotopies of closed contours where no points
are fixed, but the curves stay closed during the homotopy.
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Definition 3.20. Let 𝛼 and 𝛽 be two closed contours in𝑈. We say that 𝛼 and 𝛽
are loop-homotopic in𝑈 if there exists a continuous function𝐻∶ [0, 1]2 → 𝑈
such that

𝐻(⋅, 0) = 𝛼(⋅)
𝐻(⋅, 1) = 𝛽(⋅)
𝐻(0, ⋅) = 𝐻(1, ⋅) ◆

Theorems 3.16,3.17,3.18 and 3.19 also have analogous versions for loop-
homotopies.

Theorem 3.21. Let 𝛼 and 𝛽 be two closed contours in a convex open set𝑈. Then
𝛼 and 𝛽 are loop-homotopic.

Proof. Linear interpolation as in the proof of Theorem 3.16.

Theorem 3.22. Let 𝛼 and 𝛽 be two closed contours in𝑈 that are loop-homotopic
to each other. Then there exists a 2-chain in 𝑈 whose boundary is equivalent to
the 1-chain 𝛼 − 𝛽.

Proof. The same construction as in Theorem 3.17 works. This time the 1-cells
𝑆𝑛,𝑘|[1,1+𝑖] and 𝑆0,𝑘|[0,𝑖] are not necessarily constant curves, but they are equal
because both are linear interpolations between the same endpoints. We thus
have 𝑆𝑛,𝑘|[1,1+𝑖] −𝑆0,𝑘|[0,𝑖] = 0 as a 1-chain, leaving again only the 1-cells 𝐼𝑗,0 and
𝐼𝑗,𝑛 (1 ≤ 𝑗 ≤ 𝑛) to contribute to the boundary of the constructed 2-chain.

Theorem 3.23. Let 𝛼 and 𝛽 be closed contours loop-homotopic to each other in
𝑈. Then for any differentiable 1-form 𝜔 with 𝑑𝜔 = 0 we have

∫
𝛼
𝜔 = ∫
𝛽
𝜔.

Proof. Analogous to the proof of Theorem 3.18.

Theorem 3.24. Let 𝛼 and 𝛽 be closed contours loop-homotopic to each other in
𝑈. Then for any holomorphic 𝑓∶ 𝑈 → ℂ we have

∫
𝛼
𝑓𝑑𝑧 = ∫

𝛽
𝑓𝑑𝑧.

Proof. Analogous to the proof of Theorem 3.19.

Definition 3.25. An open set 𝑈 ⊂ ℂ is called simply connected if all closed
contours in 𝑈 are loop-homotopic to each other in 𝑈. ◆

Intuitively, a set is simply connected if it is connected and does not contain
holes. In particular, convex sets are simply connected by Theorem 3.21.
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Example 3.26. Consider the contour 𝛾𝑛 given by 𝛾𝑛(𝑡) = 𝑒2𝜋𝑖𝑛𝑡 for some 𝑛 ∈ ℤ,
which goes around the unit circle 𝑛 times. Then

∫
𝛾𝑛

1
𝑧
𝑑𝑧 = 2𝜋𝑖𝑛,

which means that 𝛾𝑛 and 𝛾𝑚 are not loop-homotopic in ℂ ⧵ {0} unless 𝑛 = 𝑚.
In particular, ℂ ⧵ {0} is not simply connected. ◆

Theorem3.27 (Cauchy’s integral theorem). Let𝑓∶ 𝑈 → ℂ be holomorphic and
suppose that 𝑈 is simply connected. Then ∫

𝛾
𝑓𝑑𝑧 = 0 for every closed contour 𝛾

in 𝑈.

Proof. Let 𝑧0 ∈ 𝑈 be a fixed point. If 𝛾(𝑡) = 𝑧0 is the constant loop, then clearly
∫
𝛾
𝑓𝑑𝑧 = 0. The result then follows from Theorem 3.24.

3.3 Cauchy’s integral formula

Wewill next prove Cauchy’s integral formula, which can be used to recover the
value of a holomorphic function at a given point via a suitable contour integral.

Theorem 3.28 (Cauchy’s integral formula). Suppose that 𝑓 is holomorphic in𝑈
and 𝐵(𝑧0, 𝑟) ⊂ 𝑈. Then for any 𝑤 ∈ 𝐵(𝑧0, 𝑟) we have

𝑓(𝑤) = 1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑧)
𝑧 − 𝑤
𝑑𝑧.

Before going to the proof, let us introduce the following notation

∫
𝛾
𝑓(𝑧)|𝑑𝑧| ≔ ∫

1

0
𝑓(𝛾(𝑡))|𝛾′(𝑡)| 𝑑𝑡

where 𝛾∶ [0, 1] → ℂ is a curve and 𝑓 is a continuous function defined on
𝛾([0, 1]). Notice that we have by the triangle inequality2

|∫
𝛾
𝑓(𝑧) 𝑑𝑧| = |∫

1

0
𝑓(𝛾(𝑡))𝛾′(𝑡) 𝑑𝑡| ≤ ∫

1

0
|𝑓(𝛾(𝑡))||𝛾′(𝑡)| 𝑑𝑡 = ∫

𝛾
|𝑓(𝑧)||𝑑𝑧|

and that ∫
𝛾
|𝑑𝑧| is (by definition) the length of the curve 𝛾. If 𝛾 = 𝛾1 +⋯ + 𝛾𝑛

2One canuseRiemann sums and the triangle inequality for sums to deduce that | ∫1
0
𝑔(𝑡) 𝑑𝑡| =

lim𝑁→∞ | ∑
𝑁
𝑛=1 𝑔(𝑛/𝑁)/𝑁| ≤ lim𝑁→∞ ∑

𝑁
𝑛=1 |𝑔(𝑛/𝑁)|/𝑁 = ∫

1
0
|𝑔(𝑡)| 𝑑𝑡 for any continuous

𝑔∶ [0, 1] → ℂ.
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is a 1-chain consisting of multiple 𝐶1-arcs, we set similarly

∫
𝛾
𝑓(𝑧)|𝑑𝑧| =

𝑛

∑
𝑘=1
∫
𝛾𝑘
𝑓(𝑧)|𝑑𝑧|

and again have

|∫
𝛾
𝑓(𝑧) 𝑑𝑧| ≤ ∫

𝛾
|𝑓(𝑧)||𝑑𝑧|.

Proof of Theorem 3.28. Let 𝜀 ∈ (0, 𝑟 − |𝑤 − 𝑧0|). Notice that 𝜕𝐵(𝑧0, 𝑟) is loop-
homotopic in 𝑈 ⧵ {𝑤} to 𝜕𝐵(𝑤, 𝜀), for instance via the homotopy

𝐻(𝑡, 𝑠) = (1 − 𝑠)𝑧0 + 𝑠𝑤 + ((1 − 𝑠)𝑟 + 𝑠𝜀)𝑒2𝜋𝑖𝑡.

Indeed, for any 𝑡, 𝑠 ∈ [0, 1] the triangle inequality and the upper bound on 𝜀
gives us

|𝐻(𝑡, 𝑠) − 𝑧0| = |𝑠(𝑤 − 𝑧0) + ((1 − 𝑠)𝑟 + 𝑠𝜀)𝑒2𝜋𝑖𝑡| ≤ 𝑠|𝑤 − 𝑧0| + (1 − 𝑠)𝑟 + 𝑠𝜀 < 𝑟,

so that𝐻([0, 1]2) ⊂ 𝐵(𝑧0, 𝑟) ⊂ 𝑈. Moreover, by the reverse triangle inequality
|𝑎 + 𝑏| ≥ |𝑏| − |𝑎| we have

|𝐻(𝑡, 𝑠) − 𝑤| = |(1 − 𝑠)(𝑧0 − 𝑤) + ((1 − 𝑠)𝑟 + 𝑠𝜀)𝑒2𝜋𝑖𝑡|
≥ |((1 − 𝑠)𝑟 + 𝑠𝜀)𝑒2𝜋𝑖𝑡| − (1 − 𝑠)|𝑧0 − 𝑤|
= (1 − 𝑠)(𝑟 − |𝑧0 − 𝑤|) + 𝑠𝜀 ≥ (1 − 𝑠)𝜀 + 𝑠𝜀 = 𝜀 > 0,

so that 𝑤 ∉ 𝐻([0, 1]2). By Theorem 3.24 and Lemma 3.14 we then have that

| 1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑧)
𝑧 − 𝑤
𝑑𝑧 − 𝑓(𝑤)| = | 1

2𝜋𝑖
∫
𝜕𝐵(𝑤,𝜀)

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤

𝑑𝑧| .

Note that since 𝑓 is complex-differentiable at 𝑤, we have

|
𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤

| ≤ |𝑓′(𝑤)| + 1 ≕ 𝐶

for |𝑧 − 𝑤| small enough. Thus, for small enough 𝜀 we have

| 1
2𝜋𝑖
∫
𝜕𝐵(𝑤,𝜀)

𝑓(𝑧) − 𝑓(𝑤)
𝑧 − 𝑤

𝑑𝑧| ≤ 1
2𝜋
∫
𝜕𝐵(𝑤,𝜀)
𝐶 |𝑑𝑧| = 𝐶𝜀

and the claim follows by letting 𝜀 → 0.

We will next use Cauchy’s integral formula to prove the very important re-
sult that derivatives of holomorphic functions are themselves holomorphic and
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have an analogous integral representation.

Theorem 3.29 (Generalized Cauchy’s formula). Suppose that 𝑓 is holomorphic
in 𝑈. Then 𝑓 is 𝑛-times ℂ-differentiable on 𝑈 for any 𝑛 ≥ 0 and if 𝑧0 ∈ 𝑈 and
𝑟 > 0 are such that 𝐵(𝑧0, 𝑟) ⊂ 𝑈, we have

𝑓(𝑛)(𝑤) = 𝑛!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑧)
(𝑧 − 𝑤)𝑛+1

𝑑𝑧

for any 𝑤 ∈ 𝐵(𝑧0, 𝑟).

Proof. We will show by induction that for any 𝑤 ∈ 𝐵(𝑧0, 𝑟) and 𝑛 ≥ 0 the
derivative 𝑓(𝑛)(𝑤) exists and equals

𝑓(𝑛)(𝑤) = 𝑛!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑧)
(𝑧 − 𝑤)𝑛+1

𝑑𝑧.

We know from Theorem 3.28 that the claim holds for 𝑛 = 0, so the initial step
is clear. Suppose thus that it holds for some 𝑛 ≥ 0. We can write the difference
quotient of 𝑓(𝑛) as

𝑓(𝑛)(𝑤 + ℎ) − 𝑓(𝑛)(𝑤)
ℎ

= 𝑛!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑎𝑛+1 − 𝑏𝑛+1

ℎ
𝑓(𝑧) 𝑑𝑧,

where 𝑎 = 1/(𝑧 − 𝑤 − ℎ) and 𝑏 = 1/(𝑧 − 𝑤). Recall that 𝑎𝑛+1 − 𝑏𝑛+1 = (𝑎 −
𝑏)(𝑎𝑛 + 𝑎𝑛−1𝑏 +⋯ + 𝑏𝑛−1𝑎 + 𝑏𝑛) and note that 𝑎 − 𝑏 = ℎ𝑎𝑏, so that we have

𝑎𝑛+1 − 𝑏𝑛+1

ℎ
= 𝑎𝑏(𝑎𝑛 + 𝑎𝑛−1𝑏 +⋯ + 𝑏𝑛−1𝑎 + 𝑏𝑛).

Note that this tends to (𝑛+1)(𝑧−𝑤)−(𝑛+2) as ℎ → 0, andmoreover is uniformly
bounded for 𝑧 ∈ 𝜕𝐵(𝑧0, 𝑟), since for small enough ℎ we have |𝑧 − 𝑤 − ℎ| >
|𝑧 − 𝑤|/2 > (𝑟 − |𝑤 − 𝑧0|)/4. It follows that the integral converges as ℎ → 0,
𝑓(𝑛) is complex-differentiable at 𝑤, and

𝑓(𝑛+1)(𝑤) = (𝑛 + 1)!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑧)
(𝑧 − 𝑤)𝑛+2

𝑑𝑧

as wanted.

Let us close this section with an example computation of a concrete contour
integral using Cauchy’s integral formula.
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Example 3.30. Let us evaluate

∫
𝜕𝐵(0,2)

(𝑧4 + 1) sin(𝑧)
𝑧3 − 𝑖𝑧2

𝑑𝑧.

Note first that by factoring the denominator we have

(𝑧4 + 1) sin(𝑧)
𝑧3 − 𝑖𝑧2

= (𝑧
4 + 1) sin(𝑧)
𝑧2(𝑧 − 𝑖)

,

which is analytic inℂ⧵{0, 1}. Wemay next use a partial fraction decomposition
(see below) to write

𝑧4 + 1
𝑧2(𝑧 − 𝑖)

= 𝑧 + 𝑖 + 𝑖
𝑧2
+ 1
𝑧
− 2
𝑧 − 𝑖
.

Note that since (𝑧 + 𝑖) sin(𝑧) is holomorphic in the whole plane, we have

∫
𝜕𝐵(0,2)
(𝑧 + 𝑖) sin(𝑧) 𝑑𝑧 = 0

by Cauchy’s integral theorem. For the other three terms (the generalized)
Cauchy’s integral formula gives us

∫
𝜕𝐵(0,2)

(𝑧4 + 1) sin(𝑧)
𝑧3 − 𝑖𝑧2

𝑑𝑧

= ∫
𝜕𝐵(0,2)

𝑖 sin(𝑧)
𝑧2
𝑑𝑧 + ∫

𝜕𝐵(0,2)

sin(𝑧)
𝑧
𝑑𝑧 − ∫

𝜕𝐵(0,2)

2 sin(𝑧)
𝑧 − 𝑖
𝑑𝑧

= 2𝜋𝑖(𝑖 sin′(0) + sin(0) − 2 sin(𝑖)) = −2𝜋 − 4𝜋𝑖 sin(𝑖)

= −2𝜋 − 4𝜋𝑖𝑒
𝑖⋅𝑖 − 𝑒−𝑖⋅𝑖

2𝑖
= 2𝜋(𝑒 − 𝑒−1 − 1). ◆

In the previous example we used a partial fraction decomposition. In gen-
eral, if we have a rational function of the form 𝑝(𝑧)

(𝑧−𝑎1)𝑘1…(𝑧−𝑎𝑛)𝑘𝑛
where 𝑝 is a

polynomial, 𝑎1,… , 𝑎𝑛 are distinct complex numbers and 𝑘1,… , 𝑘𝑛 ≥ 1 are
integers, we can write it in the form

𝑞(𝑧) +
𝑛

∑
ℓ=1

𝑘ℓ
∑
𝑗=1

𝑐ℓ,𝑗
(𝑧 − 𝑎ℓ)𝑗

where 𝑞(𝑧) = 𝑞𝑑𝑧𝑑+⋯+𝑞1𝑧+𝑞0 is a polynomial of degree𝑑 = deg(𝑝)−𝑘1−⋯−
𝑘𝑛 (we set 𝑞 = 0 if 𝑑 < 0) and 𝑐ℓ,𝑗 are complex numbers. To find 𝑞 and 𝑐ℓ,𝑗, one
can multiply the above expression by the denominator (𝑧 − 𝑎1)𝑘1…(𝑧 − 𝑎𝑛)𝑘𝑛
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of the original function to get a polynomial whose coefficients have to equal
those of 𝑝. This gives us a linear system for the unknowns 𝑞𝑘 and 𝑐ℓ,𝑗.

For instance, consider the function 𝑧
4+1
𝑧2(𝑧−𝑖) we had above. Since the numer-

ator has degree 4 which is one more than the degree of the denominator, 𝑞
should have degree 1, and we look for constants 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 such that

𝑧4 + 1
𝑧2(𝑧 − 𝑖)

= 𝑎𝑧 + 𝑏 + 𝑐
𝑧2
+ 𝑑
𝑧
+ 𝑒
𝑧 − 𝑖
.

Multiplying by 𝑧2(𝑧 − 𝑖) we get

𝑧4 + 1 = 𝑎𝑧3(𝑧 − 𝑖) + 𝑏𝑧2(𝑧 − 𝑖) + 𝑐(𝑧 − 𝑖) + 𝑑𝑧(𝑧 − 𝑖) + 𝑒𝑧2

= 𝑎𝑧4 + (𝑏 − 𝑖𝑎)𝑧3 + (𝑑 + 𝑒 − 𝑖𝑏)𝑧2 + (𝑐 − 𝑖𝑑)𝑧 − 𝑖𝑐,

Equating the coefficients we get the equations 𝑎 = 1, 𝑏 − 𝑖𝑎 = 0, 𝑑 + 𝑒 − 𝑖𝑏 = 0,
𝑐 − 𝑖𝑑 = 0 and −𝑖𝑐 = 1, whose solution is 𝑎 = 1, 𝑏 = 𝑖, 𝑐 = 𝑖, 𝑑 = 1, 𝑒 = −2,
giving us

𝑧4 + 1
𝑧2(𝑧 − 𝑖)

= 𝑧 + 𝑖 +
𝑖
𝑧2
+
1
𝑧
−
2
𝑧 − 𝑖
.

3.4 Morera’s theorem

Morera’s theoremprovides a converse toCauchy’s integral theorem: If integrat-
ing 𝑓 over closed contours always gives 0 as the result, then 𝑓 is holomorphic.
In fact, it is enough to check this for triangular contours.

Theorem 3.31 (Morera’s theorem). Let 𝑓 be a continuous function on 𝑈 and
suppose that

∫
𝜕𝑇
𝑓(𝑧) 𝑑𝑧 = 0

for all closed triangles 𝑇 in 𝑈. Then 𝑓 is holomorphic in 𝑈.

Proof. It is enough to prove the theorem locally, i.e. inside a ball 𝐵(𝑧0, 𝑟) for
some 𝑧0 ∈ 𝑈 and 𝑟 > 0. Let us define 𝐹∶ 𝐵(𝑧0, 𝑟) → ℂ by setting

𝐹(𝑧) = ∫
𝑧

𝑧0
𝑓(𝑤) 𝑑𝑤,

where the integral is along a straight segment from 𝑧0 to 𝑧. If we can show that
𝐹 is holomorphic in𝐵(𝑧0, 𝑟) and𝐹′(𝑧) = 𝑓(𝑧), wewill be done since derivatives
of holomorphic functions are holomorphic by Theorem 3.29. Suppose that
𝑧 ∈ 𝐵(𝑧0, 𝑟) and that ℎ ∈ ℂ has small enough modulus so that 𝑧 + ℎ ∈ 𝐵(𝑧0, 𝑟)
as well. Then the triangle with vertices 𝑧0, 𝑧 and 𝑧 + ℎ lies inside 𝐵(𝑧0, 𝑟) by
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convexity, and we have

𝐹(𝑧 + ℎ) − 𝐹(𝑧)
ℎ

=
∫𝑧+ℎ
𝑧0
𝑓(𝑤) 𝑑𝑤 − ∫𝑧

𝑧0
𝑓(𝑤) 𝑑𝑤

ℎ
.

By assumption, we have

∫
𝑧+ℎ

𝑧0
𝑓(𝑤) 𝑑𝑤 = ∫

𝑧

𝑧0
𝑓(𝑤) 𝑑𝑤 + ∫

𝑧+ℎ

𝑧
𝑓(𝑤) 𝑑𝑤,

so that

|
𝐹(𝑧 + ℎ) − 𝐹(𝑧)
ℎ

− 𝑓(𝑧)| ≤
1
ℎ
|∫
𝑧+ℎ

𝑧
(𝑓(𝑤) − 𝑓(𝑧)) 𝑑𝑤| ,

which tends to 0 as ℎ → 0 by the continuity of 𝑓.

As a corollary we get the following result on uniform limits of holomorphic
functions.

Theorem 3.32. Let (𝑓𝑛)∞𝑛=1 be a sequence of holomorphic functions 𝑓𝑛 ∶ 𝑈 → ℂ
converging uniformly on compact subsets of𝑈 to a function 𝑓∶ 𝑈 → ℂ. Then 𝑓
is holomorphic in 𝑈.

Proof. It is enough to show that 𝑓 is holomorphic in any ball 𝐵(𝑧0, 𝑟) ⊂ 𝑈. Let
𝑇 be a closed triangle in 𝐵(𝑧0, 𝑟). Since𝑓𝑛 → 𝑓 uniformly on compact subsets,
𝑓 is continuous, and we may exchange taking limits and integration to get

∫
𝜕𝑇
𝑓(𝑧) 𝑑𝑧 = ∫

𝜕𝑇
lim
𝑛→∞
𝑓𝑛(𝑧) 𝑑𝑧 = lim

𝑛→∞
∫
𝜕𝑇
𝑓𝑛(𝑧) 𝑑𝑧 = 0

by Cauchy’s integral theorem (note that 𝐵(𝑧0, 𝑟) is simply connected), making
Morera’s theorem applicable.
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4.1 Analytic functions

Definition 4.1. A function 𝑓∶ 𝑈 → ℂ is analytic in 𝑈, if for every 𝑧0 ∈ 𝑈
there exists 𝑟 > 0 and coefficients (𝑎𝑛)∞𝑛=0 in ℂ such that 𝑓 can be written as a
converging power series

𝑓(𝑧) =
∞

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛

for 𝑧 ∈ 𝐵(𝑧0, 𝑟) ⊂ 𝑈. ◆
The main result of this section is that analytic functions are holomorphic

and vice versa. Indeed, often the two terms are used synonymously.
Let us begin with the following lemma.

Lemma4.2. Suppose that the power series∑∞𝑛=0 𝑎𝑛(𝑧−𝑧0)
𝑛 converges in the open

disc 𝐵(𝑧0, 𝑅) for some 𝑅 > 0. Then the convergence is uniform in any smaller
disc 𝐵(𝑧0, 𝑟) with 𝑟 < 𝑅.

Proof. By translation and scaling it is enough to consider the case 𝑧0 = 0 and
𝑅 = 1. We first claim that for any 𝜀 > 0 we have |𝑎𝑛| ≤ (1 + 𝜀)𝑛 for 𝑛 large
enough. Assume that this is not the case. Then there exist infinitely many 𝑛
such that |𝑎𝑛| > (1+𝜀)𝑛. But then for 𝑧 = 1/(1+𝜀)we have |𝑎𝑛𝑧𝑛| > 1 infinitely
often, and the series ∑∞𝑛=0 𝑎𝑛𝑧

𝑛 cannot converge, giving a contradiction.
Let now 𝑟 < 1 and fix 𝜀 > 0 so small that (1 + 𝜀)𝑟 < 1. We have

sup
𝑧∈𝐵(𝑧0,𝑟)
|
∞

∑
𝑛=0
𝑎𝑛𝑧𝑛 −

𝑁

∑
𝑛=0
𝑎𝑛𝑧𝑛| ≤

∞

∑
𝑛=𝑁+1
|𝑎𝑛|𝑟𝑛 ≤

∞

∑
𝑛=𝑁+1
((1 + 𝜀)𝑟)𝑛

for𝑁 large enough. The right-hand side tends to 0 as𝑁 → ∞, showing uni-
form convergence in 𝐵(𝑧0, 𝑟).

Theorem 4.3. Let 𝑓 be an analytic function in 𝑈. Then 𝑓 is holomorphic in 𝑈
and the power series of 𝑓 around 𝑧0 ∈ 𝑈 is unique and given by

𝑓(𝑧) =
∞

∑
𝑛=0

𝑓(𝑛)(𝑧0)
𝑛!
(𝑧 − 𝑧0)𝑛.
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Proof. It is enough to show that 𝑓 is holomorphic in a neighborhood of any
point 𝑧0 ∈ 𝑈. Since 𝑓 is analytic, we can find 𝑟 > 0 and coefficients 𝑎𝑛 ∈ ℂ
such that

𝑓(𝑧) =
∞

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛

holds for 𝑧 ∈ 𝐵(𝑧0, 𝑟). By Lemma 4.2 the series converges uniformly on the
ball 𝐵(𝑧0, 𝑟/2). Since each partial sum ∑𝑁𝑛=0 𝑎𝑛(𝑧 − 𝑧0)

𝑛 is a polynomial and
hence holomorphic, the holomorphicity of 𝑓 follows from Theorem 3.32. By
Cauchy’s integral formula, uniform convergence and Lemma 3.14 we also have

𝑓(𝑘)(𝑧0) =
𝑘!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟/2)

∑∞𝑛=0 𝑎𝑛(𝑧 − 𝑧0)
𝑛

(𝑧 − 𝑧0)𝑘+1
𝑑𝑧

=
∞

∑
𝑛=0

𝑘!
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟/2)

𝑎𝑛(𝑧 − 𝑧0)𝑛−𝑘−1 𝑑𝑧 = 𝑘!𝑎𝑘

showing that we necessarily have 𝑎𝑘 = 𝑓(𝑘)(𝑧0)/𝑘!.

Let us next prove the converse.

Theorem 4.4. Let 𝑓 be a holomorphic function in some disc 𝐵(𝑧0, 𝑅). Then we
have

𝑓(𝑧) =
∞

∑
𝑛=0

𝑓(𝑛)(𝑧0)
𝑛!
(𝑧 − 𝑧0)𝑛

for all 𝑧 ∈ 𝐵(𝑧0, 𝑅).

Proof. Let 𝑧 ∈ 𝐵(𝑧0, 𝑅) and pick 𝑟 ∈ (|𝑧 − 𝑧0|, 𝑅). Since 𝑓 is holomorphic, we
have by Cauchy’s integral formula that

𝑓(𝑧) = 1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = 1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑤)
𝑤 − 𝑧0
⋅ 1
1 − 𝑧−𝑧0𝑤−𝑧0

𝑑𝑤

= 1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑤)
𝑤 − 𝑧0

∞

∑
𝑛=0
( 𝑧 − 𝑧0
𝑤 − 𝑧0
)
𝑛
𝑑𝑤,

where the geometric series converges since |𝑧 − 𝑧0| < |𝑤 − 𝑧0| = 𝑟. For fixed
𝑧 and 𝑟 the series converges uniformly in 𝑤, and we can switch the order of
integration and summation to get

𝑓(𝑧) =
∞

∑
𝑛=0

1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝑟)

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1

𝑑𝑤 ⋅ (𝑧 − 𝑧0)𝑛 =
∞

∑
𝑛=0

𝑓(𝑛)(𝑧0)
𝑛!
(𝑧 − 𝑧0)𝑛

by the generalized Cauchy’s integral formula.
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Corollary 4.5. Let 𝑓 be a holomorphic function in an open set 𝑈. Then 𝑓 is
analytic in𝑈 and the radius of convergence of the power series of𝑓 around 𝑧0 ∈ 𝑈
is at least dist(𝑧0, 𝜕𝑈).

Remark. Series of the form
∞

∑
𝑛=0

𝑓(𝑛)(𝑧0)
𝑛!
(𝑧 − 𝑧0)𝑛

where the coefficients are given by 𝑛th order derivatives of a holomorphic func-
tion divided by 𝑛! are also called Taylor series. Thus, we have shown that any
power series with positive radius of convergence defines a holomorphic func-
tion whose Taylor series agrees with the original power series. ◆

Let us also note the following simple version of Taylor’s theorem for analytic
functions.

Lemma 4.6. Suppose that 𝑓 has a converging power series

𝑓(𝑧) =
∞

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛

for 𝑧 ∈ 𝐵(𝑧0, 𝑅). Then for any 𝑘 ≥ 0 we have the asymptotic expansion

𝑓(𝑧) =
𝑘

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛 + 𝑂((𝑧 − 𝑧0)𝑘+1)

as 𝑧 → 𝑧0.

Proof. Let

𝑔(𝑧) ≔
∞

∑
𝑛=𝑘+1
𝑎𝑛(𝑧 − 𝑧0)𝑛 =

∞

∑
𝑛=0
𝑎𝑛+𝑘+1(𝑧 − 𝑧0)𝑛+𝑘+1

so that

𝑓(𝑧) =
𝑘

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛 + 𝑔(𝑧).

Note the following simple fact: For any coefficients 𝑐𝑛 and constant 𝜆 ≠ 0 a
complex series ∑∞𝑛=0 𝑐𝑛 converges to 𝐿 if and only if ∑∞𝑛=0 𝜆𝑐𝑛 converges to 𝜆𝐿.
Thus, applying this with 𝑐𝑛 = 𝑎𝑛+𝑘+1 and 𝑟 = (𝑧 − 𝑧0)𝑘+1, we see that for a fixed
𝑧 ≠ 𝑧0 the series

ℎ(𝑧) ≔
∞

∑
𝑛=0
𝑎𝑛+𝑘+1(𝑧 − 𝑧0)𝑛

converges if and only if the series 𝑔(𝑧) converges, which we know happens in
𝐵(𝑧0, 𝑅). Moreover, ℎ(𝑧) clearly converges for 𝑧 = 𝑧0 as well, showing that ℎ is
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an analytic function in 𝐵(𝑧0, 𝑅) and

𝑔(𝑧) = (𝑧 − 𝑧0)𝑘+1ℎ(𝑧).

In particular, ℎ(𝑧) is bounded as 𝑧 → 𝑧0, implying that 𝑔(𝑧) = 𝑂((𝑧 − 𝑧0)𝑘+1)
as 𝑧 → 𝑧0.

Sometimes we are given a power series in terms of its coefficients, and we
would like to know its radius of convergence. The answer is given by the fol-
lowing theorem.

Theorem 4.7. Let (𝑎𝑛)∞𝑛=0 be a sequence of complex numbers and 𝑧0 ∈ ℂ. Then
the power series ∑∞𝑛=0 𝑎𝑛(𝑧 − 𝑧0)

𝑛 converges in 𝐵(𝑧0, 𝑅), where

𝑅 = lim inf
𝑛→∞
|𝑎𝑛|−1/𝑛.

The series does not converge for any 𝑧 with |𝑧 − 𝑧0| > 𝑅. For |𝑧 − 𝑧0| = 𝑅 the
series may or may not converge.

Proof. We may without loss of generality assume that 𝑧0 = 0. Suppose first
that |𝑧| < 𝑟 for some 𝑟 < 𝑅. By assumption |𝑎𝑛|−1/𝑛 > 𝑟 for 𝑛 large enough,
meaning that

∞

∑
𝑛=0
|𝑎𝑛||𝑧|𝑛 ≤

∞

∑
𝑛=0
𝑟−𝑛|𝑧|𝑛 < ∞,

so that the series converges absolutely.
Suppose next that |𝑧| > 𝑟 > 𝑅. By assumption, we have |𝑎𝑛|−1/𝑛 < 𝑟 for

infinitely many 𝑛. This implies that we have |𝑎𝑛||𝑧|𝑛 ≥ 𝑟−𝑛𝑟𝑛 = 1 for infinitely
many 𝑛, which means that the series cannot converge at 𝑧.

Let us close this section with an application to real Taylor series.

Example 4.8. Consider the function 𝑓(𝑥) = 11+𝑥2 on the real line. We can
write its Taylor series at some point 𝑥0 > 0. It turns out that one can express
the series as

𝑓(𝑥) =
∞

∑
𝑛=0
(−1)𝑛 Im((𝑥0 − 𝑖)−𝑛−1)(𝑥 − 𝑥0)𝑛,

but without even computing the terms, we know that its radius of convergence
will be√1 + 𝑥20 , since this is the distance from 𝑥0 to the boundary of the open
set ℂ ⧵ {±𝑖} where 𝑓 is holomorphic.

It came to appear that, between two truths of the real domain, the easiest and
shortest path quite often passes through the complex domain. –Paul Painlevé ◆
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4.2 Laurent series

Laurent series are a generalization of power series where we allow negative
powers of 𝑧 − 𝑧0 in addition to the non-negative ones.

Definition 4.9. A Laurent series is a series of the form
∞

∑
𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

where 𝑎𝑛, 𝑧0 ∈ ℂ and 𝑧 is a variable. ◆
A Laurent series 𝑓(𝑧) = ∑∞𝑛=−∞ 𝑎𝑛(𝑧 − 𝑧0)

𝑛 can be split into a sum 𝑓(𝑧) =
𝑔(𝑧) + ℎ(𝑧), where

𝑔(𝑧) =
−1

∑
𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛 and ℎ(𝑧) =

∞

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛.

The series 𝑔(𝑧) containing the terms of negative order is sometimes called
the principal part of 𝑓(𝑧). The power series ℎ(𝑧) converges for |𝑧| < 𝑅ℎ ≔
lim inf𝑛→∞ |𝑎𝑛|−1/𝑛, while 𝑔(𝑧) can be viewed as a power series∑∞𝑛=1 𝑎−𝑛𝑤

𝑛 in
𝑤 = 1/(𝑧 − 𝑧0) that converges when

|𝑤| < lim inf
𝑛→∞
|𝑎−𝑛|−1/𝑛.

This can be equivalently written as

|𝑧 − 𝑧0| > 𝑅𝑔 ≔ lim sup
𝑛→∞
|𝑎−𝑛|1/𝑛.

Hence, if𝑅𝑔 < 𝑅ℎ, we see that the Laurent series𝑓(𝑧) converges in the annulus
𝐴(𝑧0, 𝑅𝑔, 𝑅ℎ) to a holomorphic function. Conversely, we have the following.

Theorem 4.10. Let 𝑧0 ∈ ℂ and 0 ≤ 𝑟 < 𝑅 ≤ ∞. Suppose that 𝑓∶ 𝐴(𝑧0, 𝑟, 𝑅) →
ℂ is holomorphic.1 Then 𝑓 has a converging Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞
𝑎𝑛𝑧𝑛,

for 𝑧 ∈ 𝐴(𝑧0, 𝑟, 𝑅), where the coefficients 𝑎𝑛 are given by

𝑎𝑛 =
1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝜌)

𝑓(𝑧)
(𝑧 − 𝑧0)𝑛+1

𝑑𝑧,

independent of the radius 𝜌 ∈ (𝑟, 𝑅).

1Note that we have 𝐴(𝑧0, 0, 𝑅) = 𝐵(𝑧0, 𝑅) ⧵ {𝑧0} if 𝑟 = 0.

52



4 Power series

Before proving the theorem let us show the following version of Cauchy’s
integral formula for annuli.

Lemma 4.11. Let 𝑓∶ 𝐴(𝑧0, 𝑟, 𝑅) → ℂ be holomorphic and let 𝑎 and 𝑏 be such
that 𝑟 < 𝑎 < 𝑏 < 𝑅. Then for any 𝑧 ∈ 𝐴(𝑧0, 𝑎, 𝑏) we have

𝑓(𝑧) = 1
2𝜋𝑖
∫
𝜕𝐴(𝑧0,𝑎,𝑏)

𝑓(𝑤)
𝑧 − 𝑤
𝑑𝑤.

Proof. Let 𝑔(𝑤) = 𝑓(𝑤)−𝑓(𝑧)𝑤−𝑧 for 𝑤 ∈ 𝐴(𝑧0, 𝑟, 𝑅) ⧵ {𝑧} and 𝑔(𝑧) = 𝑓′(𝑧). Then 𝑔
is holomorphic in 𝐴(𝑧0, 𝑟, 𝑅) since it is clearly holomorphic in 𝐴(𝑧0, 𝑟, 𝑅) ⧵ {𝑧}
and by analyticity of 𝑓 at 𝑧 we can write for 𝑤 ≠ 𝑧,

𝑔(𝑤) =
𝑓(𝑧) + 𝑓′(𝑧)(𝑤 − 𝑧) + 𝑓

″(𝑧)
2 (𝑤 − 𝑧)

2 + 𝑂((𝑤 − 𝑧)3) − 𝑓(𝑧)
𝑤 − 𝑧

= 𝑓′(𝑧) + 𝑓
″(𝑧)
2
(𝑤 − 𝑧) + 𝑂((𝑤 − 𝑧)2),

so that 𝑔 is ℂ-differentiable at 𝑧. In particular, by Stokes’ theorem we have
∫
𝜕𝐴(𝑧0,𝑎,𝑏)

𝑔(𝑤) 𝑑𝑤 = 0 and thus,

∫
𝜕𝐴(𝑧0,𝑎,𝑏)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = ∫

𝜕𝐴(𝑧0,𝑎,𝑏)

𝑓(𝑧)
𝑤 − 𝑧
𝑑𝑤 = 𝑓(𝑧) ∫

𝜕𝐴(𝑧0,𝑎,𝑏)

1
𝑤 − 𝑧
𝑑𝑤.

Finally, we note that

∫
𝜕𝐴(𝑧0,𝑎,𝑏)

1
𝑤 − 𝑧
𝑑𝑤 = ∫

𝜕𝐵(𝑧0,𝑏)

1
𝑤 − 𝑧
𝑑𝑤 − ∫

𝜕𝐵(𝑧0,𝑎)

1
𝑤 − 𝑧
𝑑𝑤 = 2𝜋𝑖

since 𝐵(𝑧0, 𝑏) contains 𝑧 but 𝐵(𝑧0, 𝑎) does not.

Proof of Theorem 4.10. We may assume without loss of generality that 𝑧0 = 0.
Using Lemma 4.11 we have

𝑓(𝑧) = 1
2𝜋𝑖
∫
𝜕𝐴(0,𝑎,𝑏)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑏)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤− 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑎)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤.
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Note that when 𝑤 ∈ 𝜕𝐵(0, 𝑏) we have |𝑧/𝑤| < 1, so we may write

1
2𝜋𝑖
∫
𝜕𝐵(0,𝑏)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑏)

𝑓(𝑤)
𝑤
⋅ 1
1 − 𝑧𝑤
𝑑𝑤

= 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑏)

𝑓(𝑤)
𝑤

∞

∑
𝑛=0
( 𝑧
𝑤
)
𝑛
𝑑𝑤.

=
∞

∑
𝑛=0

1
2𝜋𝑖
∫
𝜕𝐵(0,𝑏)

𝑓(𝑤)
𝑤𝑛+1
𝑑𝑤𝑧𝑛

=
∞

∑
𝑛=0

1
2𝜋𝑖
∫
𝜕𝐵(0,𝜌)

𝑓(𝑤)
𝑤𝑛+1
𝑑𝑤𝑧𝑛.

Here we used uniform convergence to exchange summation and integration
and homotopy invariance tomove the contour to the circle of radius 𝜌 ∈ (𝑟, 𝑅).
This gives us the non-negative terms in the Laurent series. Similarly, when
𝑤 ∈ 𝜕𝐵(0, 𝑎) we have |𝑤/𝑧| < 1, and we may write

− 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑎)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑎)

𝑓(𝑤)
𝑧
⋅ 1
1 − 𝑤𝑧
𝑑𝑤

= 1
2𝜋𝑖
∫
𝜕𝐵(0,𝑎)

𝑓(𝑤)
𝑧

∞

∑
𝑛=0
(𝑤
𝑧
)
𝑛
𝑑𝑤.

=
∞

∑
𝑛=0

1
2𝜋𝑖
∫
𝜕𝐵(0,𝑎)
𝑓(𝑤)𝑤𝑛 𝑑𝑤𝑧−𝑛−1

=
−1

∑
𝑛=−∞

1
2𝜋𝑖
∫
𝜕𝐵(0,𝜌)

𝑓(𝑤)
𝑤𝑛+1
𝑑𝑤𝑧𝑛,

which gives us the negative terms in the Laurent series.

Functions 𝑓 that are analytic in a punctured disc 𝐵(𝑧0, 𝑟) ⧵ {𝑧0} can be clas-
sified based on their Laurent series 𝑓(𝑧) = ∑∞𝑛=−∞ 𝑎𝑛(𝑧 − 𝑧0)

𝑛 around 𝑧0:

• If

𝑓(𝑧) =
∞

∑
𝑛=−𝑚
𝑎𝑛(𝑧 − 𝑧0)𝑛

with𝑚 ∈ ℤ and 𝑎−𝑚 ≠ 0, then 𝑓 is said to have a pole of order𝑚 at 𝑧0.

• In the above case we also say that 𝑓 has a zero of order −𝑚 at 𝑧0.

• If𝑚 ≤ 0, then 𝑓 is said to have a removable singularity at 𝑧0, and 𝑓 can
be extended to an analytic function

𝑓(𝑧) =
∞

∑
𝑛=0
𝑎𝑛(𝑧 − 𝑧0)𝑛
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in 𝐵(𝑧0, 𝑟).

• If 𝑎−𝑛 ≠ 0 for infinitely many 𝑛 ≥ 1, then 𝑓 is said to have an essential
singularity at 𝑧0.

Lemma 4.12. Suppose that 𝑓 is holomorphic in 𝐵(𝑧0, 𝑟) ⧵ {𝑧0}. Then 𝑓 has a
pole of order 𝑛 ∈ ℤ at 𝑧0 if and only if (𝑧 − 𝑧0)𝑛𝑓(𝑧) is bounded near 𝑧0 but
(𝑧−𝑧0)𝑛−1𝑓(𝑧) is unbounded. In this case (𝑧−𝑧0)𝑛𝑓(𝑧) will extend analytically
to 𝐵(𝑧0, 𝑟).

Proof. Clearly if 𝑓 has a pole of order 𝑛 at 𝑧0, then ℎ(𝑧) = (𝑧−𝑧0)𝑛𝑓(𝑧)will be
analytic near 𝑧0 and hence bounded, while (𝑧−𝑧0)𝑛−1𝑓(𝑧)will not be bounded.

Conversely, suppose that ℎ(𝑧) is bounded in𝐵(𝑧0, 𝑟)⧵{𝑧0} and (𝑧−𝑧0)𝑛−1𝑓(𝑧)
is unbounded. Then if 𝑎𝑛 are the coefficients of the Laurent series of ℎ(𝑧), we
have for 𝑛 ≥ 1 that

|𝑎−𝑛| ≤
1
2𝜋
∫
𝜕𝐵(𝑧0,𝜌)
|ℎ(𝑧)||𝑧 − 𝑧0|𝑛−1 |𝑑𝑧|

which tends to 0 as 𝜌 → 0. Hence, the principal part of ℎ(𝑧) vanishes and ℎ
can be extended analytically to 𝐵(𝑧0, 𝑟). Thus,

𝑓(𝑧) =
∞

∑
𝑘=−𝑛
𝑎𝑘+𝑛(𝑧 − 𝑧0)𝑘

and 𝑓 has a pole of order 𝑛.

Example 4.13. The function 𝑓(𝑧) = 𝑒1/𝑧
(𝑧−2)(𝑧+𝑖)3 has an essential singularity at 0,

a first order pole at 2 and a third order pole at−𝑖. To see this, we first note that𝑓
is unbounded near all three points, so none of the singularities are removable.
It is also easy to see by considering real 𝑧 > 0 that 𝑧𝑛𝑓(𝑧) is unbounded as
𝑧 → 0 for any 𝑛 ≥ 1, so the singularity at 0 is essential. Similarly, (𝑧 − 2)𝑓(𝑧)
and (𝑧 + 𝑖)3𝑓(𝑧) are bounded as 𝑧 → 2 or 𝑧 → −𝑖 (but (𝑧 + 𝑖)2𝑓(𝑧) is not), so
𝑓 has first and third order poles at these points. ◆

It is important to note that the Laurent series of a function really depends on
the annulus, not just the center point 𝑧0. For instance, the function 𝑓(𝑧) = 1𝑧−1
has two different Laurent series around 0. The first one is the geometric series

−
∞

∑
𝑛=0
𝑧𝑛

converging in 𝐵(0, 1), while the second one converges in 𝐴(0, 1,∞) and can
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be found by writing

1
𝑧 − 1
= 1
𝑧
⋅ 1
1 − 1𝑧
= 1
𝑧

∞

∑
𝑛=0

1
𝑧𝑛
=
−1

∑
𝑛=−∞
𝑧𝑛.

4.3 Computing series

In this section we will illustrate some computational methods for finding Tay-
lor and Laurent series. Let us first note that Laurent series behave well under
differentiation.

Theorem 4.14. Suppose that 𝑓 has a converging Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

in some annulus 𝐴(𝑧0, 𝑟, 𝑅). Then the Laurent series of 𝑓′ in 𝐴(𝑧0, 𝑟, 𝑅) is given
by

∞

∑
𝑛=−∞
(𝑛 + 1)𝑎𝑛+1(𝑧 − 𝑧0)𝑛.

Proof. Let 𝜌 ∈ (𝑟, 𝑅) and let 𝑏𝑛 be the coefficients of the Laurent series of 𝑓′ in
𝐴(𝑧0, 𝑟, 𝑅), so that

𝑏𝑛 =
1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝜌)

𝑓′(𝑧)
(𝑧 − 𝑧0)𝑛+1

𝑑𝑧.

We will do integration by parts by noting that

𝑓′(𝑧)
(𝑧 − 𝑧0)𝑛+1

𝑑𝑧 = 𝑑( 𝑓(𝑧)
(𝑧 − 𝑧0)𝑛+1

) + (𝑛 + 1)𝑓(𝑧)
(𝑧 − 𝑧0)𝑛+2

𝑑𝑧

so that by Stokes’ theorem we have

𝑏𝑛 =
1
2𝜋𝑖
∫
𝜕𝐵(𝑧0,𝜌)

(𝑛 + 1)𝑓(𝑧)
(𝑧 − 𝑧0)𝑛+2

𝑑𝑧 = (𝑛 + 1)𝑎𝑛+1.

Let us next discuss some common methods for finding Taylor or Laurent
series.

• In the case of Taylor series, computing derivatives.
– Example: Taylor series ∑∞𝑛=0 𝑎𝑛(𝑧 − 𝑎)

𝑛 of sin(𝑧) around 𝑧 = 𝑎
has coefficients 𝑎𝑛 = sin(𝑎)/𝑛! if 𝑛 ≡ 0 (mod 4), 𝑎𝑛 = cos(𝑎)/𝑛!
if 𝑛 ≡ 1 (mod 4), 𝑎𝑛 = − sin(𝑎)/𝑛! if 𝑛 ≡ 2 (mod 4) and 𝑎𝑛 =
− cos(𝑎)/𝑛! if 𝑛 ≡ 3 (mod 4).
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– Example: Let𝑓(𝑧) = Log(1−𝑧). Then𝑓′(𝑧) = −1/(1−𝑧),𝑓″(𝑧) =
−1/(1 − 𝑧)2, 𝑓(3)(𝑧) = −2/(1 − 𝑧)3, 𝑓(4)(𝑧) = −3!/(1 − 𝑧)4 and in
general 𝑓(𝑛)(𝑧) = −(𝑛 − 1)!/(1 − 𝑧)𝑛. Hence,

Log(1 − 𝑧) = −
∞

∑
𝑛=1

𝑧𝑛

𝑛
.

• Using known series as building blocks.

– Example: The Taylor series of 𝑒𝑧
2
at 𝑧 = 0 is given by ∑∞𝑛=0

𝑧2𝑛
𝑛! .

– Example: Consider 𝑓(𝑧) = 1
(1−𝑧)2 . Then 𝑓(𝑧) = 𝑔′(𝑧), where

𝑔(𝑧) = 11−𝑧 = ∑
∞
𝑛=0 𝑧
𝑛 and hence 𝑓(𝑧) = ∑∞𝑛=0(𝑛 + 1)𝑧

𝑛.

• Especially when only finitelymany leading order terms are needed, mul-
tiplication or division of known expansions while keeping track of the
remainder (using 𝑂-notation or otherwise) can be powerful.

– Example: Consider 𝑓(𝑧) = 1/ sin(𝑧) around 𝑧 = 0. We know that
sin(𝑧) = 𝑧 − 𝑧

3

3! + 𝑂(𝑧
5). We can do the division by extracting the

leading order asymptotics of 𝑓 one-by-one to get

1
sin(𝑧)
= 1
𝑧 − 𝑧

3

3! + 𝑂(𝑧
5)
= 1
𝑧
+
𝑧2
3! + 𝑂(𝑧

4)

𝑧 − 𝑧
3

3! + 𝑂(𝑧
5)

= 1
𝑧
+
𝑧
3! + 𝑂(𝑧

3)

1 − 𝑧
2

3! + 𝑂(𝑧
4)
= 1
𝑧
+ 𝑧
3!
+
𝑧3
3!2 + 𝑂(𝑧

3)

1 − 𝑧
2

3! + 𝑂(𝑧
5)

= 1
𝑧
+ 𝑧
6
+ 𝑂(𝑧3).
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Residue calculus

5.1 Winding numbers and boundary chains

So far we have seen versions of Cauchy’s integral formula for the disc and the
annulus. The residue theorem we are going to prove will be a generalization of
them, where instead of 𝑓(𝑧)/(𝑧 − 𝑧0) with first order pole at 𝑧0 we are allowed
to have functions withmultiple singularity points, and where we integrate over
the boundaries of more general sets (for instance regions with multiple holes).

We will from now on assume that the coefficients of our 𝑛-chains are inte-
gers.

Definition 5.1. A 1-chain 𝛾 in 𝑈 is called closed if 𝜕𝛾 = 0, and a boundary in
𝑈 if there exists a 2-chain 𝑆 in 𝑈 such that 𝜕𝑆 is equivalent with 𝛾. ◆

It is easy to see that if 𝛾 is a boundary then it is automatically closed since
for a single 2-cell its boundary is a closed contour. We have also seen that if 𝑈
is simply connected then every closed contour is a boundary. It is in fact quite
easy to show that a closed 1-chain (with integer coefficients) is always a sum of
closed contours, so the same holds for closed 1-chains as well.

Our goal in this section is to show the topological result that boundaries in
𝑈 are exactly the 1-chains whose total rotation, or winding, around every 𝑧 ∈
ℂ ⧵ 𝑈 is 0. For instance, an annulus 𝐴(0, 1, 2) has two boundary components,
−𝜕𝐵(0, 1) and 𝜕𝐵(1, 2), where theminus sign indicates that the inner boundary
is oriented clockwise. For points 𝑧 ∈ 𝐵(0, 1) the boundary−𝜕𝐵(0, 1)makes one
turn clockwise around 𝑧 while 𝜕𝐵(0, 2)makes one turn counter-clockwise, so
the total winding is 0. When 𝑧 lies inside the annulus, the inner boundary has
winding 0 and the outer boundary has winding 2𝜋, so the total winding is 2𝜋.
Finally, for points 𝑧 with |𝑧| > 2 both the inner and the outer boundary has
winding 0. Thus, 𝜕𝐴(0, 1, 2) is a boundary in 𝐴(0, 1/2, 5/2), for instance.

Let us next define winding rigorously. Since it does not make sense to mea-
sure thewinding at a point that lies on the 1-chain, it is useful to have a notation
for the total image of the cells of a 1-chain.

Definition 5.2. Suppose that 𝛾 = 𝑐1𝛾1 +⋯+𝑐𝑛𝛾𝑛 is a 1-chain with coefficients
𝑐1,… , 𝑐𝑛 ∈ ℤ ⧵ {0} and pairwise distinct 1-cells 𝛾1,… , 𝛾𝑛.1 The support of 𝛾
is defined as supp(𝛾) ≔ ⋃𝑛𝑘=1 𝛾𝑘([0, 1]). ◆

We can now define the winding of a 1-chain 𝛾 around a given point. Let

1Note that every 1-chain can be uniquely written in this form.
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5 Residue calculus

Figure 5.1: A 1-chain (solid black) in an open set 𝑈 (light blue) that is the
boundary of a 2-chain (dashed black) in 𝑈.
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5 Residue calculus

(𝑟𝑧0 , 𝜃𝑧0 ) denote the polar coordinates centered at the point 𝑧0 ∉ supp(𝛾), i.e.
𝑟𝑧0 (𝑧) = |𝑧 − 𝑧0| and 𝜃𝑧0 (𝑧) = Arg(𝑧 − 𝑧0) = Im(Log(𝑧 − 𝑧0)), where Arg is the
principal branch of the argument. Note that these coordinates are𝐶1 in the set
𝑧 − 𝑧0 ∈ ℂ ⧵ (−∞, 0], in which case2

𝑑𝜃𝑧0 = Im(𝑑 Log(𝑧 − 𝑧0)) = Im(
𝑑𝑧
𝑧 − 𝑧0
) .

Theright-hand side however is well-defined and𝐶1 alsowhen 𝑧−𝑧0 ∈ (−∞, 0),
so we can use this formula to define 𝑑𝜃𝑧0 as a 1-form in ℂ ⧵ {𝑧0}.3

Definition 5.3. Let 𝛾 be a 1-chain and let 𝑧0 ∈ ℂ ⧵ supp(𝛾). The winding
𝑊(𝛾, 𝑧0) of 𝛾 around 𝑧0 is given by

𝑊(𝛾, 𝑧0) = ∫
𝛾
𝑑𝜃𝑧0 = Im(∫𝛾

𝑑𝑧
𝑧 − 𝑧0
) ,

where 𝑑𝜃𝑧0 ≔ Im ( 𝑑𝑧𝑧−𝑧0). We also define the index Ind(𝛾, 𝑧0) ≔ 𝑊(𝛾, 𝑧0)/(2𝜋)
to be the amount of winding measured in whole turns. ◆

Theorem 5.4. Let 𝛾 be a closed 1-chain with integer coefficients and 𝑧0 ∈ ℂ ⧵
supp(𝛾). Then Ind(𝛾, 𝑧0) is an integer and

Ind(𝛾, 𝑧0) =
1
2𝜋𝑖
∫
𝛾

𝑑𝑧
𝑧 − 𝑧0
.

Proof. We may assume that 𝑧0 = 0, since Ind(𝛾, 𝑧0) = Ind( ̃𝛾, 0), where ̃𝛾 is 𝛾
translated by −𝑧0.

Let us first prove the formula. It is enough to show thatRe (∫
𝛾
𝑑𝑧
𝑧 ) = 0. Note

that log(|𝑧|) (with the usual log ∶ (0,∞) → ℝ) is a well-defined 𝐶1 function in
ℂ ⧵ {0} with

𝑑[log(|𝑧|)] = 1
2
𝑑[log(|𝑧|2)] = 𝑧𝑑𝑧 + 𝑧𝑑𝑧

2|𝑧|2
= Re(
𝑑𝑧
𝑧
) .

2If 𝜔 is a 1-form we denote by Im(𝜔) the 1-form defined by Im(𝜔)(𝑣) = Im(𝜔(𝑣)) for tangent
vectors 𝑣 and similarly for Re(𝜔).

3One can also explain the formula geometrically: Suppose that 𝑧0 = 0 and that we want
to measure the change in angle when we are at point 𝑧 and move in the direction 𝑣. By
dividing by 𝑧 we scale the picture so that we are on the unit circle, and also rotate it so
that 𝑧 becomes 1. The tangent to the unit circle in the positive direction points up at 1, so
taking the imaginary part of 𝑣/𝑧measures the change in angle in radians to the first order.
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5 Residue calculus

Thus, we have

Re(∫
𝛾

𝑑𝑧
𝑧
) = ∫
𝛾
Re(
𝑑𝑧
𝑧
) = ∫
𝛾
𝑑[log(|𝑧|)] = ∫

𝜕𝛾
log(|𝑧|) = 0

since 𝛾 is closed.
Let us next show that Ind(𝛾, 0) is an integer. Suppose that 𝛾 = 𝑐1𝛾1+⋯+𝑐𝑛𝛾𝑛

where 𝑐1,… , 𝑐𝑛 ∈ ℤ and 𝛾1,… , 𝛾𝑛 are 1-cells. We claim that

exp(∫
𝛾𝑘

𝑑𝑧
𝑧
) = 𝛾𝑘(1)
𝛾𝑘(0)
,

which seems plausible, since formally ∫
𝛾𝑘
𝑑𝑧
𝑧 = log(𝛾𝑘(1))− log(𝛾𝑘(0)). To show

this, let

𝐼(𝑡) = ∫
𝑡

0

𝛾′𝑘(𝑠)
𝛾𝑘(𝑠)
𝑑𝑠

so that 𝐼(1) = ∫
𝛾𝑘
𝑑𝑧
𝑧 and define also 𝑢(𝑡) = 𝛾𝑘(𝑡)𝑒−𝐼(𝑡). We have

𝑢′(𝑡) = (𝛾′𝑘(𝑡) − 𝛾𝑘(𝑡)𝐼′(𝑡))𝑒−𝐼(𝑡) = (𝛾′𝑘(𝑡) − 𝛾𝑘(𝑡)
𝛾′𝑘(𝑡)
𝛾𝑘(𝑡)
) 𝑒−𝐼(𝑡) = 0,

so that 𝑢 is constant and 𝛾𝑘(0) = 𝑢(0) = 𝑢(1) = 𝛾𝑘(1) exp (−∫𝛾𝑘
𝑑𝑧
𝑧 ) as wanted.

Raising this to power 𝑐𝑘 and multiplying over 𝑘 we get

𝛾1(1)𝑐1…𝛾𝑛(1)𝑐𝑛
𝛾1(0)𝑐1…𝛾𝑛(0)𝑐𝑛

= 𝑒2𝜋𝑖 Ind(𝛾,0)

and since 𝛾 is closed, the end points of the 𝛾𝑘 must cancel each other and the
left-hand side equals 1. This can only happen if Ind(𝛾, 0) ∈ ℤ.

Theorem 5.5.The function 𝑧 ↦ 𝑊(𝛾, 𝑧) is continuous in ℂ ⧵ supp(𝛾). In par-
ticular, if 𝛾 is closed, then Ind(𝛾, 𝑧) is constant in each connected component of
ℂ ⧵ supp(𝛾).

Proof. Exercise.

Themain theoremof this section is the following. Its proof has been adapted
from [1, Theorem 6.11].

Theorem 5.6. A closed 1-chain in𝑈 is a boundary in𝑈 if and only if Ind(𝛾, 𝑧) =
0 for all 𝑧 ∉ 𝑈.

Proof. Let us first assume that 𝛾 is a boundary and 𝑧0 ∉ 𝑈. Then (𝑧 − 𝑧0)−1 is
holomorphic in 𝑈, and we have Ind(𝛾, 𝑧0) = 0 by Stokes’ theorem.
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5 Residue calculus

Figure 5.2: The 1-chain 𝛾 in purple and𝛼 in orange. The grid𝐺 has been drawn
in thin lines. Rectangles in light green have index 1, in dark green
index 2, and in white index 0with respect to 𝛼. The round markers
represent the endpoints of the segments in 𝛼 before subdivision,
while crosses represent the vertices of the grid.

The other direction is trickier since we need to construct a suitable 2-chain
in 𝑈 with 𝛾 as its boundary. Our proof will be based on a couple of lemmas.

Lemma 5.7.There exists a 1-chain 𝛼 in 𝑈 such that 𝛾 − 𝛼 is a boundary in 𝑈
and each 1-cell in 𝛼 is either a horizontal or a vertical line segment.

Proof. Since sums of boundaries are boundaries, it is enough to show this for
each 1-cell 𝛾𝑗 in 𝛾 separately. Moreover, by using uniform continuity and sub-
dividing 𝛾𝑗 if needed, we may assume that 𝛾𝑗([0, 1]) ⊂ 𝐵(𝛾𝑗(0), 𝑟/2) where 𝑟 is
the distance from 𝛾𝑗 to 𝜕𝑈. Let 𝛼𝑗 be the contour going first horizontally from
𝛾𝑗(0) to (Re(𝛾𝑗(1)), Im(𝛾𝑗(0))) and then continuing vertically to 𝑄. Then both
𝛾𝑗 and 𝛼𝑗 have the same endpoints and are contained in 𝐵(𝛾𝑗(0), 𝑟/2) which is
a convex set. They are thus homotopic, implying that 𝛾𝑗 − 𝛼𝑗 is a boundary in
𝑈 by Theorem 3.17.

Consider now the 1-chain 𝛼 from the lemma above. Note that 𝛼 is closed
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5 Residue calculus

since 𝛾 and 𝛼 − 𝛾 are, and our task has been reduced to showing that 𝛼 is
a boundary in 𝑈. Let 𝐺 be the (finite) union of all horizontal and vertical
lines that pass through one of the endpoints of the segments 𝛼𝑗 in the chain,
see Figure 5.2. Then 𝐺 forms a grid such that supp(𝛼) ⊂ 𝐺 and by subdivid-
ing 𝛼 and ignoring constant paths we may assume that 𝛼 = ∑𝑚𝑗=1 𝑐𝑗𝛼𝑗, where
𝑐𝑗 ∈ ℤ ⧵ {0} and each 𝛼𝑗 is a segment between adjacent vertices of the grid.
Let 𝑅1,… , 𝑅𝑛 denote the closed rectangles whose interiors form the bounded
connected components of ℂ ⧵ 𝐺 and let 𝑧𝑗 be the center point of 𝑅𝑗. Let
𝑆 = ∑𝑛𝑗=1 Ind(𝛼, 𝑧𝑗)𝑅𝑗.

Lemma 5.8. Viewing 𝑅𝑗 as 2-cells, we have 𝛼 = 𝜕𝑆 = ∑
𝑛
𝑗=1 Ind(𝛼, 𝑧𝑗)𝜕𝑅𝑗.

Proof. Consider the 1-chain 𝛽 = 𝛼−∑𝑛𝑗=1 Ind(𝛼, 𝑧𝑗)𝜕𝑅𝑗. We want to show that
𝛽 = 0. Clearly Ind(𝛽, 𝑧𝑗) = 0 for all 1 ≤ 𝑗 ≤ 𝑛 since Ind(𝜕𝑅𝑘, 𝑧𝑗) = 1 if 𝑗 = 𝑘
and 0 otherwise. Moreover, we also have Ind(𝛽, 𝑧) = Ind(𝛼, 𝑧) = 0 when 𝑧
belongs to an unbounded connected component of ℂ ⧵ 𝐺, since

Ind(𝛼, 𝑧) = 1
2𝜋𝑖
∫
𝛼

𝑑𝑤
𝑤 − 𝑧
→ 0

as |𝑧| → ∞. Suppose, to obtain a contradiction, that there is some rectangle
𝑅𝑗 with a boundary edge 𝜎 that appears in 𝛽with a coefficient𝑚 ≠ 0. Consider
𝛽′ = 𝛽 − 𝑚𝜕𝑅𝑗. Clearly Ind(𝛽′, 𝑧) = −𝑚 for points in the interior of 𝑅𝑗, while
we still have Ind(𝛽′, 𝑧) = 0 for 𝑧 in other connected components of ℂ ⧵ 𝐺.
However, supp(𝛽′) does not contain𝜎, and hence Ind(𝛽′, 𝑧) should not change
when 𝑧 crosses 𝜎, giving us a contradiction.

To finish the proof we still need to show that 𝑆 is a 2-chain in𝑈. To that end,
it is enough to show that Ind(𝛼, 𝑧𝑗) = 0whenever𝑅𝑗 is not fully contained in𝑈.
Suppose that 𝑧 ∈ 𝑅𝑗 ⧵𝑈 for some 𝑗. Then Ind(𝛼, 𝑧) = Ind(𝛾, 𝑧) = 0 by construc-
tion, and moreover 𝑧 lies in the same connected component of ℂ ⧵ supp(𝛼) as
𝑧𝑗, since either 𝑧 lies in the interior of 𝑅𝑗, or it lies on the boundary, but the
corresponding boundary segment cannot be part of supp(𝛼) ⊂ 𝑈. Hence, we
have Ind(𝛼, 𝑧𝑗) = 0 as well.

5.2 Residue theorem

The residue theorem yields a mechanical approach to doing contour integrals
of functions with point-singularities.

Definition 5.9. Let𝑓∶ 𝐵(𝑧0, 𝑟)⧵{𝑧0} → ℂ be holomorphic with Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞
𝑎𝑛(𝑧 − 𝑧0)𝑛.
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We define the residue Res(𝑓, 𝑧0) of 𝑓 at 𝑧0 by setting Res(𝑓, 𝑧0) ≔ 𝑎−1. ◆
Let us now state the residue theorem.

Theorem 5.10 (Residue theorem). Let𝑈 ⊂ ℂ be open and 𝛾 be a closed 1-chain
in 𝑈 such that Ind(𝛾, 𝑧) = 0 for all 𝑧 ∈ ℂ ⧵ 𝑈. Suppose that 𝑧1,… , 𝑧𝑛 ∈ 𝑈 ⧵
supp(𝛾) are pairwise distinct and that 𝑓∶ 𝑈 ⧵ {𝑧1,… , 𝑧𝑛} → ℂ is holomorphic.
Then

∫
𝛾
𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖

𝑛

∑
𝑘=1

Ind(𝛾, 𝑧𝑘)Res(𝑓, 𝑧𝑘).

Proof. Since Ind(𝛾, 𝑧) = 0 for all 𝑧 ∈ ℂ⧵𝑈, 𝛾 is a boundary in𝑈. Let us choose
𝑟1,… , 𝑟𝑛 > 0 such that 𝐵𝑘 = 𝐵(𝑧𝑘, 𝑟𝑘) satisfies 𝐵𝑘 ⊂ 𝑈 ⧵ {𝑧1,… , 𝑧𝑛} ∪ {𝑧𝑘} for
all 1 ≤ 𝑘 ≤ 𝑛. Note that the 1-chain

𝛾 −
𝑛

∑
𝑘=1

Ind(𝛾, 𝑧𝑘)𝜕𝐵𝑘

is a boundary in 𝑈 ⧵ {𝑧1,… , 𝑧𝑘}. Hence, by Stokes’ theorem we have

∫
𝛾
𝑓(𝑧) 𝑑𝑧 =

𝑛

∑
𝑘=1

Ind(𝛾, 𝑧𝑘) ∫
𝜕𝐵𝑘
𝑓(𝑧) 𝑑𝑧.

Since the Laurent series 𝑓(𝑧) = ∑∞𝑗=−∞ 𝑎𝑗(𝑧 − 𝑧𝑘)
𝑗 around 𝑧𝑘 converges uni-

formly on 𝜕𝐵𝑘, we have

∫
𝜕𝐵𝑘
𝑓(𝑧) 𝑑𝑧 =

∞

∑
𝑗=−∞
𝑎𝑗 ∫
𝜕𝐵𝑘
(𝑧 − 𝑧𝑘)𝑗 𝑑𝑧 = 2𝜋𝑖𝑎−1 = 2𝜋𝑖Res(𝑓, 𝑧𝑘).

The most common situation where the residue theorem applies is when𝑈 =
ℂ and 𝛾 is any closed contour.

Example 5.11. Let 𝛾 be the boundary of the square [−10, 10]2 and

𝑓(𝑧) = cos(𝑧)
(𝑧 − 1)(𝑧 − 2)2(𝑧 + 100)

.

We want to compute
∫
𝛾
𝑓(𝑧) 𝑑𝑧.

Since 𝑓 is holomorphic in ℂ ⧵ {1, 2, −100}, the residue theorem applies with
𝑈 = ℂ. Note that −100 lies outside the square, so Ind(𝛾, −100) = 0, while
Ind(𝛾, 1) = Ind(𝛾, 2) = 1. We then compute the residues. Note that since
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(𝑧 − 1)𝑓(𝑧) is bounded near 1, 𝑓 has a 1st order pole at 1. Hence,

Res(𝑓, 1) = lim
𝑧→1
(𝑧 − 1)𝑓(𝑧) = cos(1)

101
.

Thepole at 2 is of 2nd order, so if we let𝑔(𝑧) = (𝑧−2)2𝑓(𝑧), we haveRes(𝑓, 2) =
𝑔′(2). Computing the derivative we have

𝑔′(𝑧) = − sin(𝑧)(𝑧 − 1)(𝑧 + 100) − (𝑧 + 100 + 𝑧 − 1) cos(𝑧)
(𝑧 − 1)2(𝑧 + 199)2

,

so
𝑔′(2) = −102 sin(2) − 103 cos(2)

2012
,

giving us

∫
𝛾
𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 (cos(1)

101
+ −102 sin(2) − 103 cos(2)

2012
) . ◆

5.3 Applications to integrals

One application where contour integration can turn out to be useful is in eval-
uating integrals of analytic functions over the real line. The idea is to integrate
from −𝑅 to 𝑅 and then close the contour by adding a curve from 𝑅 back to −𝑅
in such a way that the integral over the added part will tend to 0 as 𝑅 → ∞.
The integral over the closed contour can then be evaluated using the residue
theorem.

Example 5.12. Consider the integral ∫∞
−∞
𝑒𝑖𝑡𝑥
𝜋(1+𝑥2) 𝑑𝑥. This is the Fourier trans-

form of the function (1 + 𝑥2)−1/𝜋, or in probabilistic terms, the characteristic
function of the Cauchy distribution.

Note first that the integral converges since the integrand is 𝑂(𝑥−2) as |𝑥| →
∞ and has no singularities. Moreover, since 𝑒𝑖𝑡𝑥 = cos(𝑡𝑥) + 𝑖 sin(𝑡𝑥) where
cos is an even function and sin is odd, we see that the imaginary part of the
integral vanishes and the value of the integral does not change if we replace 𝑡
by −𝑡. We can thus assume that 𝑡 ≥ 0.

Our strategy for computing the integral is as follows: We consider a closed
contour 𝛾𝑅 that consists of the segment [−𝑅, 𝑅] and the semicircle 𝐶𝑅(𝑡) =
𝑅𝑒𝑖𝜋𝑡, 𝑡 ∈ [0, 1]. Then as 𝑅 → ∞ the integral ∫𝑅

−𝑅
𝑒𝑖𝑡𝑧
𝜋(1+𝑧2) 𝑑𝑧 tends to the final

integral we are after, so if we can show that ∫
𝐶𝑅
𝑒𝑖𝑡𝑧
𝜋(1+𝑧2) 𝑑𝑧 tends to 0, we see that

∫
𝛾𝑅
𝑒𝑖𝑡𝑥
𝜋(1+𝑧2) 𝑑𝑧 → ∫

∞
−∞
𝑒𝑖𝑡𝑥
𝜋(1+𝑥2) 𝑑𝑥. We can then evaluate ∫

𝛾𝑅
𝑒𝑖𝑡𝑧
𝜋(1+𝑧2) 𝑑𝑧 by using

the residue theorem to get the result.
Let us first show that 𝐸𝑅 = ∫𝐶𝑅

𝑒𝑖𝑡𝑧
𝜋(1+𝑧2) 𝑑𝑧 → 0. By taking absolute values
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we see that |𝐸𝑅| ≤ ∫𝐶𝑅
|𝑒𝑖𝑡𝑧|
𝜋|1+𝑧2| |𝑑𝑧|. Note that |𝑒𝑖𝑡𝑧| = 𝑒Re(𝑖𝑡𝑧) < 1 since 𝑡 ≥ 0

and Im(𝑧) ≥ 0 for 𝑧 ∈ supp(𝐶𝑅). The length of 𝐶𝑅 is 𝜋𝑅, and by the triangle
inequality we have |1 + 𝑧2| ≥ |𝑧|2 − 1 = 𝑅2 − 1, so that

𝐸𝑅 ≤
𝜋𝑅
𝜋(𝑅2 − 1)

→ 0

as 𝑅 → ∞.
Finally, let us compute ∫

𝛾𝑅
𝑒𝑖𝑡𝑧
𝜋(1+𝑧2) 𝑑𝑧. The function 𝑒𝑖𝑡𝑧

𝜋(1+𝑧2) has first order
poles at 𝑧 = ±𝑖. By inspection, Ind(𝛾𝑅, 𝑖) = 1 and Ind(𝛾𝑅, −𝑖) = 0. We have

Res( 𝑒
𝑖𝑡𝑧

𝜋(1 + 𝑧2)
, 𝑖) = lim

𝑧→𝑖
(𝑧 − 𝑖) 𝑒

𝑖𝑡𝑧

𝜋(1 + 𝑧2)
= 𝑒
−𝑡

2𝜋𝑖
.

Hence,

∫
𝛾𝑅

𝑒𝑖𝑡𝑧

𝜋(1 + 𝑧2)
𝑑𝑧 = 2𝜋𝑖 Ind(𝛾𝑅, 𝑖)Res(

𝑒𝑖𝑡𝑧

𝜋(1 + 𝑧2)
, 𝑖) = 𝑒−𝑡.

By symmetry we then have

∫
∞

−∞

𝑒𝑖𝑡𝑥

𝜋(1 + 𝑥2)
𝑑𝑥 = 𝑒−|𝑡|

for all 𝑡 ∈ ℝ. ◆

5.4 Applications to series

Contour integration can also help in evaluating certain series. The idea is to
choose a suitable function that has the terms of the series as residues.

A common strategy is to use the function 𝑔(𝑧) = 𝜋 cot(𝜋𝑧) = 𝜋 cos(𝜋𝑧)sin(𝜋𝑧) as
a building block. This function has simple poles at 𝑧 ∈ ℤ with residue 1, as
shown by the computation

lim
𝑧→𝑛

(𝑧 − 𝑛)𝜋 cos(𝜋𝑧)
sin(𝜋𝑧)

= 𝜋 cos(𝜋𝑛)
𝜋 sin′(𝜋𝑛)

= 1.

We may also compute for 𝑧 = 𝑥 + 𝑖𝑦 that

|𝑔(𝑧)|2 = |
𝜋 cos(𝜋𝑧)
sin(𝜋𝑧)

|
2
= 𝜋2 |
𝑒𝑖𝜋𝑧 + 𝑒−𝑖𝜋𝑧

𝑒𝑖𝜋𝑧 − 𝑒−𝑖𝜋𝑧
|
2

= 𝜋2 𝑒
2𝜋𝑦 + 𝑒−2𝜋𝑦 + 𝑒2𝜋𝑖𝑥 + 𝑒−2𝜋𝑖𝑥

𝑒2𝜋𝑦 + 𝑒−2𝜋𝑦 − 𝑒2𝜋𝑖𝑥 − 𝑒−2𝜋𝑖𝑥

= 1 +
cos(2𝜋𝑥)

cosh(2𝜋𝑦) − cos(2𝜋𝑥)
.
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This is in particular bounded on the boundary of the square𝑅𝑛 = [−𝑛−1/2, 𝑛+
1/2]2, uniformly in 𝑛. The idea is now to multiply 𝑔 by a function that corre-
sponds to the series we are trying to compute.

Example 5.13. Suppose that we want to compute

∞

∑
𝑛=1

1
1 + 𝑛2
.

We consider the function ℎ(𝑧) = 𝑔(𝑧)/(1 + 𝑧2) where 𝑔(𝑧) = 𝜋 cot(𝜋𝑧) and
integrate over 𝜕𝑅𝑛 to get

1
2𝜋𝑖
∫
𝜕𝑅𝑛
ℎ(𝑧) 𝑑𝑧 =

𝑛

∑
𝑘=−𝑛

Res(ℎ, 𝑘) + Res(ℎ, 𝑖) + Res(ℎ, −𝑖).

The residue Res(ℎ, 𝑘) is simply 1/(1+𝑘2). As the integral tends to 0 as 𝑛 → ∞,
we have

∞

∑
𝑘=−∞

1
1 + 𝑘2
= −Res(ℎ, 𝑖) − Res(ℎ, −𝑖) = −𝑔(𝑖)

2𝑖
− 𝑔(−𝑖)
−2𝑖

= 𝜋𝑖cos(𝜋𝑖)
sin(𝜋𝑖)
= 𝜋𝑒
𝜋 + 𝑒−𝜋

𝑒𝜋 − 𝑒−𝜋
= 𝜋cosh(𝜋)

sinh(𝜋)
= 𝜋 coth(𝜋).

Thus,
∞

∑
𝑘=1

1
1 + 𝑘2
= 1
2
(𝜋 coth(𝜋) − 1). ◆

Let us note that for this method to work well one usually needs to sum the
values of an even function. Treating odd functions can in fact be very hard.
For instance, the values 𝜁(𝑛) = ∑∞𝑘=1

1
𝑘𝑛 of the Riemann zeta function for 𝑛 ≥ 2

have a relatively simple representation if 𝑛 is even, but for odd 𝑛 much less is
known about them.
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Basic rigidity theorems

‘Rigidity’ in mathematics is a loose term describing phenomena where some-
thing is completely determined by less information than one might expect to
be needed to specify the object in the first place. In the context of complex
analysis a common example is that a given holomorphic function is constant
because it satisfies some weaker-looking condition.

6.1 The maximum principle

Cauchy’s integral formula can be written in a slightly different way to show
that holomorphic functions satisfy themean value property: The value of the
function at a given point is equal to its average over a circle around that point.

Theorem 6.1 (Mean value theorem). Let 𝑓 be a holomorphic function in 𝑈.
Then for any 𝑧 ∈ 𝑈 and 𝑟 > 0 such that 𝐵(𝑧, 𝑟) ⊂ 𝑈 we have

𝑓(𝑧) = ∫
1

0
𝑓(𝑧 + 𝑟𝑒2𝜋𝑖𝑡) 𝑑𝑡.

Proof. By Cauchy’s integral formula we have

𝑓(𝑧) = 1
2𝜋𝑖
∫
𝜕𝐵(𝑧,𝑟)

𝑓(𝑤)
𝑤 − 𝑧
𝑑𝑤 = 1
2𝜋𝑖
∫
1

0

𝑓(𝑧 + 𝑟𝑒2𝜋𝑖𝑡)
𝑟𝑒2𝜋𝑖𝑡

2𝜋𝑖𝑟𝑒2𝜋𝑖𝑡 𝑑𝑡

= ∫
1

0
𝑓(𝑧0 + 𝑟𝑒2𝜋𝑖𝑡) 𝑑𝑡.

Remark. Notice that this implies in particular that if𝑓 = 𝑢+𝑖𝑣 is holomorphic
then also its real and imaginary parts 𝑢 and 𝑣 have the mean value property
𝑢(𝑧) = ∫1

0
𝑢(𝑧 + 𝑟𝑒2𝜋𝑖𝑡) 𝑑𝑡. It turns out (but we won’t prove) that a function

𝑢 satisfies the mean value property if and only it is harmonic, meaning that
∆𝑢 = 0 where ∆𝑢 ≔ 𝜕2𝑥𝑢 + 𝜕2𝑦𝑢 = 4𝜕𝑧𝜕𝑧𝑢.

Conversely, one can show that a given harmonic 𝑢∶ 𝑈 → ℝ in a simply
connected open set𝑈 has a harmonic conjugate 𝑣∶ 𝑈 → ℝ such that 𝑢+ 𝑖𝑣 is
holomorphic. Indeed, one can define 𝑣 by

𝑣(𝑤) = 𝑖 ∫
𝛾𝑤
𝜕𝑧𝑢(𝑧) 𝑑𝑧,
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where 𝛾𝑤 is an arbitrary contour from a fixed point𝑤0 ∈ 𝑈 to𝑤 ∈ 𝑈. It is easy
to check that the integral does not depend on the choice of 𝛾𝑤 since𝑈 is simply
connected and 𝜕𝑧𝜕𝑧𝑢 = 0. One then has 𝜕𝑤𝑣(𝑤) = 𝑖𝜕𝑤𝑢(𝑤)which implies that
𝑓 = 𝑢 + 𝑖𝑣 satisfies 𝜕𝑧𝑓(𝑧) = 0. ◆

From the mean value theorem one can derive the following surprisingly
powerful theorem (see also Theorem 6.10 for a generalization).

Theorem 6.2 (Maximum principle for circles). Let 𝑓 be holomorphic in 𝑈 and
suppose that 𝑧 ∈ 𝑈 and 𝑟 > 0 are such that 𝐵(𝑧, 𝑟) ⊂ 𝑈. Then

|𝑓(𝑧)| ≤ sup
𝑤∈𝐵(𝑧,𝑟)
|𝑓(𝑤)|

with equality if and only if 𝑓 is a constant in 𝐵(𝑧, 𝑟).
Before the proof let us check when equality holds in the triangle inequality

for integrals.

Lemma 6.3 (Triangle inequality). Suppose that 𝑓∶ [0, 1] → ℂ is continuous.
Then | ∫1

0
𝑓(𝑡) 𝑑𝑡| ≤ ∫1

0
|𝑓(𝑡)| 𝑑𝑡 and the equality holds if and only if 𝑓 is of the

form 𝑓(𝑡) = 𝑟(𝑡)𝑒𝑖𝜃 for some 𝑟∶ [0, 1] → [0,∞) and 𝜃 ∈ [0, 2𝜋).

Proof. Recall that integration is strictly increasing in the following sense: If
𝑔, ℎ∶ [0, 1] → ℝ are continuous real-valued functions such that 𝑔(𝑡) ≤ ℎ(𝑡)
for all 𝑡 ∈ [0, 1], then

∫
1

0
𝑔(𝑡) 𝑑𝑡 ≤ ∫

1

0
ℎ(𝑡) 𝑑𝑡

with equality if and only if 𝑔(𝑡) = ℎ(𝑡) for all 𝑡 ∈ [0, 1].
Let now 𝑓∶ [0, 1] → ℂ be continuous and choose 𝜃 ∈ [0, 2𝜋) so that
𝑒−𝑖𝜃 ∫1
0
𝑓(𝑡) 𝑑𝑡 ∈ [0,∞) and let 𝑔(𝑡) = Re(𝑒−𝑖𝜃𝑓(𝑡)) and ℎ(𝑡) = |𝑓(𝑡)|. Then

we have

|∫
1

0
𝑓(𝑡) 𝑑𝑡| = 𝑒−𝑖𝜃 ∫

1

0
𝑓(𝑡) 𝑑𝑡 = ∫

1

0
𝑔(𝑡) 𝑑𝑡 ≤ ∫

1

0
ℎ(𝑡) 𝑑𝑡 = ∫

1

0
|𝑓(𝑡)| 𝑑𝑡.

The inequality is an equality if and only ifRe(𝑒−𝑖𝜃𝑓(𝑡)) = |𝑓(𝑡)| for all 𝑡 ∈ [0, 1],
which can only happen if 𝑒−𝑖𝜃𝑓(𝑡) = |𝑓(𝑡)|.

Proof of Theorem 6.2. By the triangle inequality we have

|𝑓(𝑧)| = |∫
1

0
𝑓(𝑧 + 𝑟𝑒2𝜋𝑖𝑡) 𝑑𝑡| ≤ ∫

1

0
|𝑓(𝑧 + 𝑟𝑒2𝜋𝑖𝑡)| 𝑑𝑡 ≤ sup

𝑤∈𝜕𝐵(𝑧,𝑟)
|𝑓(𝑤)|.

Thefirst inequality is an equality if and only if there exists a constant 𝜃 ∈ [0, 2𝜋)
such that 𝑓(𝑤) = |𝑓(𝑤)|𝑒𝑖𝜃 for all 𝑤 ∈ 𝜕𝐵(𝑧, 𝑟), while the second inequality is
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6 Basic rigidity theorems

an equality if and only if |𝑓(𝑤)| is constant. Hence, |𝑓(𝑧)| = sup𝑤∈𝜕𝐵(𝑧,𝑟) |𝑓(𝑤)|
implies that 𝑓(𝑤) is constant on 𝜕𝐵(𝑧, 𝑟) and by Cauchy’s integral formula we
see that 𝑓 is constant in 𝐵(𝑧, 𝑟).

As an application, let us prove the fundamental theorem of algebra.

Theorem6.4 (Fundamental theoremof algebra). Let𝑝(𝑧) = 𝑎𝑛𝑧𝑛+⋯+𝑎1𝑧+𝑎0
be a polynomial of degree 𝑛 ≥ 1. Then there exists 𝑧0 ∈ ℂ such that 𝑝(𝑧0) = 0.

Proof. Suppose that the claim is not true, i.e. there exists a polynomial 𝑝 for
which 𝑝(𝑧) ≠ 0 for all 𝑧 ∈ ℂ. Then also 𝑓(𝑧) = 1/𝑝(𝑧) is a holomor-
phic function on ℂ. As |𝑝(𝑧)| ≥ |𝑎𝑛|2 |𝑧|

𝑛 for |𝑧| large enough1, we have that
sup𝑧∈𝜕𝐵(0,𝑅) |𝑓(𝑧)| → 0 as 𝑅 → ∞. In particular there exists 𝑅 > 0 such that
sup𝑧∈𝜕𝐵(0,𝑅) |𝑓(𝑧)| < |𝑓(0)|, which contradicts the maximum principle.

Remark. Recall that if 𝑟 is a root of a polynomial 𝑝, then 𝑝(𝑧) = (𝑧 − 𝑟)𝑞(𝑧)
for some polynomial 𝑞. From Theorem 6.4 it then follows that every complex
polynomial 𝑝(𝑧) = 𝑎𝑛𝑧𝑛 +⋯ + 𝑎1𝑧 + 𝑎0 can be written in the form

𝑝(𝑧) = 𝑎𝑛(𝑧 − 𝑟1)… (𝑧 − 𝑟𝑛),

where 𝑟1,… , 𝑟𝑛 are the roots of𝑝 (some rootsmight appearmultiple times). ◆

6.2 Liouville’s theorem

Liouville’s theorem is somewhat similar to the maximum principle in that it
allows one to show that a given function is constant by looking at its size, but
it only works when the function is defined and analytic on the whole complex
plane. Holomorphic functions ℂ → ℂ are sometimes called entire.

Theorem 6.5 (Liouville’s theorem). Let 𝑓∶ ℂ → ℂ be a bounded holomorphic
function. Then 𝑓 is constant.

Proof. Let 𝑓(𝑧) = ∑∞𝑛=0 𝑎𝑛𝑧
𝑛 be the Taylor series of 𝑓 at 0, which converges

everywhere by assumption. Then the function 𝑔(𝑧) = 𝑓(1/𝑧) has the Laurent
series

0

∑
𝑛=−∞
𝑎−𝑛𝑧−𝑛

converging inℂ⧵{0}. By assumption 𝑔 is bounded near 0, so it has a removable
singularity at 0 and hence 𝑎𝑛 = 0 for all 𝑛 ≥ 1.

1Note for instance that if𝑀 = max1≤𝑘≤𝑛−1 |𝑎𝑘|, then for |𝑧| > max(1, 2𝑛𝑀|𝑎𝑛| ) we have |𝑝(𝑧)| ≥

|𝑎𝑛||𝑧𝑛| − ∑
𝑛−1
𝑘=0 |𝑎𝑘||𝑧|

𝑘 ≥ |𝑎𝑛||𝑧𝑛| − 𝑛𝑀|𝑧|𝑛−1 =
|𝑎𝑛|
2 |𝑧|
𝑛 + |𝑧|𝑛−1 ( |𝑎𝑛|2 |𝑧| − 𝑛𝑀) ≥

|𝑎𝑛|
2 |𝑧|
𝑛.
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Example 6.6. Suppose that 𝑓∶ ℂ → ℂ is holomorphic and non-constant. We
claim that the image of𝑓 is dense. Suppose that this is not the case. Then there
exists a ball 𝐵(𝑧0, 𝑟) ⊂ ℂ ⧵ 𝑓(ℂ). The function

1
𝑓(𝑧) − 𝑧0

is therefore bounded, so that by Liouville’s theorem it is constant. It easily
follows that 𝑓(𝑧) is constant as well. ◆

Remark. Liouville’s theorem can in fact be strengthened quite a lot. A non-
constant holomorphic functionℂ → ℂ has to take as values all complex num-
bers, except at most one. This result is known as the Little PicardTheorem, but
its proof is slightly outside the scope of this course. The exponential function
does not take 0 as a value and serves as an example that one cannot improve
on the result.

Another extension of Liouville’s theorem says that if |𝑓(𝑧)| grows at most
polynomially as |𝑧| → ∞, then 𝑓 has to be a polynomial. We leave its proof as
an exercise. ◆

6.3 The identity theorem

The identity theorem says that if the zeros of an analytic function have an ac-
cumulation point inside the domain then the function has to be 0.

Theorem 6.7 (Identity theorem). Suppose that 𝑈 is connected and let 𝑓∶ 𝑈 →
ℂ be a holomorphic function. Suppose that there exists 𝑧0 ∈ 𝑈 and a sequence
𝑧𝑛 ∈ 𝑈 ⧵ {𝑧0} such that 𝑧𝑛 → 𝑧0 and 𝑓(𝑧𝑛) = 0 for every 𝑛 ≥ 1. Then 𝑓(𝑧) = 0
for all 𝑧 ∈ 𝑈.

Proof. Consider the set

𝑍 = {𝑧 ∈ 𝑈 ∶ ∃(𝑧𝑛)∞𝑛=1 ⊂ 𝑈 ⧵ {𝑧} with 𝑧𝑛 → 𝑧 and 𝑓(𝑧𝑛) = 0 for all 𝑛 ≥ 1}.

Clearly 𝑧0 ∈ 𝑍 so 𝑍 is nonempty, and if 𝑧 ∈ 𝑍 then 𝑓(𝑧) = 0 by continuity.
The set 𝑍 is closed in the subspace topology of 𝑈, since if 𝑧𝑛 ∈ 𝑍 converge to
some 𝑧 ∈ 𝑈, then either the sequence is eventually constant and hence 𝑧 ∈ 𝑍,
or there exists a subsequence 𝑧𝑛𝑘 ≠ 𝑧 with 𝑓(𝑧𝑛𝑘 ) = 0, implying 𝑧 ∈ 𝑍. If we
can show that 𝑍 is open, we will be done since 𝑈 is connected.

Suppose thus that 𝑧0 ∈ 𝑍 and consider a ball 𝐵(𝑧0, 𝑟) ⊂ 𝑈. If 𝑓(𝑧) = 0
for all 𝑧 ∈ 𝐵(𝑧0, 𝑟), then 𝐵(𝑧0, 𝑟) ⊂ 𝑍 and we are done. On the other hand, if
𝑓(𝑧) ≠ 0 for some 𝑧 ∈ 𝐵(𝑧0, 𝑟), then the power series of 𝑓 around 𝑧0 cannot
be identically 0. This means that 𝑓 has a zero of order 𝑛 at 𝑧0 for some finite
𝑛 ≥ 1. Let ℎ(𝑧) = 𝑓(𝑧)/(𝑧 − 𝑧0)𝑛. Then lim𝑧→𝑧0 ℎ(𝑧) exists and is nonzero
by definition, but on the other hand since 𝑧0 ∈ 𝑍, there exists a sequence
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𝑧𝑛 ∈ 𝐵(𝑧0, 𝑟) ⧵ {𝑧0} such that 𝑓(𝑧𝑛) = 0, implying that ℎ(𝑧𝑛) = 0 as well and
thus ℎ(𝑧0) = lim𝑛→∞ ℎ(𝑧𝑛) = 0, which is a contradiction.

Corollary 6.8. Suppose that 𝑓, 𝑔∶ 𝑈 → ℂ are holomorphic functions on a con-
nected open set 𝑈 ⊂ ℂ and suppose that the set {𝑧 ∈ 𝑈 ∶ 𝑓(𝑧) = 𝑔(𝑧)} contains
an accumulation point. Then the two functions must coincide on 𝑈.

Proof. Apply the identity theorem to 𝑓 − 𝑔.

Example 6.9. Suppose that we know that 𝑓∶ ℂ → ℂ is holomorphic and
𝑓(𝑥) = 𝑒𝑥(𝑥2 + 2𝑥) when 𝑥 ∈ ℝ. Then the same formula must be true also for
𝑥 ∈ ℂ. This can be used to cheaply extend some familiar formulas from real
to complex setting. For instance, since

cos(2𝑥) = cos2(𝑥) − sin2(𝑥) = 2 cos2(𝑥) − 1

holds for 𝑥 ∈ ℝ and both sides are analytic, the same has to hold also for
𝑥 ∈ ℂ. ◆

Using the identity theorem we can prove the following general maximum
principle.

Theorem6.10 (Maximumprinciple). Let𝑈 ⊂ ℂ be a connected open set and let
𝑓∶ 𝑈 → ℂ be holomorphic. If |𝑓| has a local maximum at some point 𝑧0 ∈ 𝑈,
then 𝑓 is constant.

Proof. Suppose that𝑓 has a local maximum at 𝑥0. Then there exists 𝑟 > 0 such
that 𝐵(𝑧0, 𝑟) ⊂ 𝑈 and |𝑓(𝑧)| ≤ |𝑓(𝑎)| for 𝑧 ∈ 𝐵(𝑧0, 𝑟). Then by Theorem 6.2
we see that 𝑓 is constant in 𝐵(𝑧0, 𝑟) and by the identity theorem it has to be
constant everywhere in 𝑈.

Corollary 6.11. Suppose that 𝑈 ⊂ ℂ is a bounded connected open set and
𝑓∶ 𝑈 → ℂ is holomorphic and extends continuously to 𝜕𝑈. Then |𝑓(𝑧)| ≤
sup𝑤∈𝜕𝑈 |𝑓(𝑤)| for all 𝑧 ∈ 𝑈 and if equality holds, then 𝑓 is constant in 𝑈.

Let us finish this section by proving the Schwarz lemma, which uses the
maximum principle to improve bounds on the modulus of holomorphic func-
tions fixing the origin.

Lemma 6.12 (Schwarz lemma). Let 𝑓∶ 𝐵(0, 1) → ℂ be holomorphic and sup-
pose that 𝑓(0) = 0 and |𝑓(𝑧)| ≤ 1 for 𝑧 ∈ 𝐵(0, 1). Then |𝑓(𝑧)| ≤ |𝑧| for all
𝑧 ∈ 𝐵(0, 1) and |𝑓′(0)| ≤ 1. Moreover, if either |𝑓′(0)| = 1 or |𝑓(𝑧0)| = |𝑧0|
for any single point 𝑧0 ∈ 𝐵(0, 1) ⧵ {0}, then there exists 𝜃 ∈ [0, 2𝜋) such that
𝑓(𝑧) = 𝑒𝑖𝜃𝑧 for all 𝑧 ∈ 𝐵(0, 1).
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Proof. Note that since 𝑓(0) = 0, the function 𝑔∶ 𝐵(0, 1) → ℂ given by

𝑔(𝑧) = {
𝑓(𝑧)
𝑧 , if 𝑧 ≠ 0
𝑓′(𝑧), if 𝑧 = 0

is holomorphic. By the maximum principle we thus have

|𝑔(𝑧)| ≤ sup
|𝑤|=𝑟
|𝑔(𝑤)| ≤ 1

𝑟

for any 𝑧 ∈ 𝐵(0, 1) and 𝑟 ∈ (|𝑧|, 1). Letting 𝑟 → 1 we get |𝑔(𝑧)| ≤ 1 for
all 𝑧 ∈ 𝐵(0, 1), or equivalently |𝑓(𝑧)| ≤ |𝑧| for 𝑧 ≠ 0 and |𝑓′(0)| ≤ 1 when
𝑧 = 0. If either of these inequalities is an equality, then |𝑔(𝑧)| = 1 for some
𝑧 ∈ 𝐵(0, 1), and again by maximum principle 𝑔(𝑧) has to be a constant of
modulus 1, yielding 𝑓(𝑧) = 𝑒𝑖𝜃𝑧 for some 𝜃 ∈ [0, 2𝜋).

6.4 Local behavior of holomorphic maps

In this section we will show that a holomorphic function looks locally like a
power map.

Theorem 6.13. Let 𝑈 ⊂ ℂ be open and simply connected and suppose that
𝑓∶ 𝑈 → ℂ ⧵ {0} is a holomorphic function with no zeros. Then there exists
a holomorphic branch of log ∘𝑓 in 𝑈, i.e. a function 𝐿∶ 𝑈 → ℂ such that
exp(𝐿(𝑧)) = 𝑓(𝑧) for all 𝑧 ∈ 𝑈.

Proof. Fix 𝑧0 ∈ 𝑈 and let 𝐷 be either ℂ ⧵ (−∞, 0] or ℂ ⧵ [0,∞), chosen so
that 𝑓(𝑧0) ∈ 𝐷. Define 𝑔∶ 𝐷 → ℂ by 𝑔(𝑧) = Log(𝑧) in the first case and by
𝑔(𝑧) = Log(0,2𝜋)(𝑧) = 𝑖𝜋 + Log(−𝑧) in the second case. In either case we have
exp(𝑔(𝑧)) = 𝑧 for 𝑧 ∈ 𝐷, so 𝑔 is a branch of the logarithm. Define also

𝐿(𝑧) = 𝑔(𝑓(𝑧0)) + ∫
𝛾𝑧

𝑓′(𝑤)
𝑓(𝑤)
𝑑𝑤,

where 𝛾𝑧 is any contour in 𝑈 starting at 𝑧0 and ending at 𝑧. The definition of
𝐿 does not depend on the choice of contour as 𝑈 is simply connected and all
such contours are homotopic. It is also easy to check that 𝐿 is holomorphic in
𝑈 with 𝐿′(𝑧) = 𝑓

′(𝑧)
𝑓(𝑧) . Indeed,

𝐿(𝑧 + ℎ) = 𝐿(𝑧) + ∫
𝑧+ℎ

𝑧

𝑓′(𝑤)
𝑓(𝑤)
𝑑𝑤 = 𝐿(𝑧) + ∫

𝑧+ℎ

𝑧
(𝑓
′(𝑧)
𝑓(𝑧)
+ 𝑜(1)) 𝑑𝑤

= 𝐿(𝑧) + 𝑓
′(𝑧)
𝑓(𝑧)
ℎ + 𝑜(ℎ)
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as ℎ → 0. Let 𝐵(𝑧0, 𝑟) be a small enough ball such that 𝑓(𝐵(𝑧0, 𝑟)) ⊂ 𝐷. In
𝐵(𝑧0, 𝑟) the function 𝑔 ∘ 𝑓 is an antiderivative of 𝑓′/𝑓, and we have

𝐿(𝑧) = 𝑔(𝑓(𝑧0)) + ∫
𝑧

𝑧0

𝑓′(𝑤)
𝑓(𝑤)
𝑑𝑤 = 𝑔(𝑓(𝑧0)) + 𝑔(𝑓(𝑧)) − 𝑔(𝑓(𝑧0)) = 𝑔(𝑓(𝑧)).

In particular 𝑒𝐿(𝑧) = 𝑓(𝑧) holds for 𝑧 ∈ 𝐵(𝑧0, 𝑟). By the identity theorem we
must have 𝑒𝐿(𝑧) = 𝑓(𝑧) everywhere in 𝑈.

Corollary 6.14. Suppose that𝑈 ⊂ ℂ is open and simply connected and𝑓∶ 𝑈 →
ℂ ⧵ {0} is holomorphic. Then there exists a branch of the 𝑛th root of 𝑓, i.e. a
holomorphic function ℎ∶ 𝑈 → ℂ such that ℎ(𝑧)𝑛 = 𝑓(𝑧) for 𝑧 ∈ 𝑈. Indeed, one
can choose ℎ(𝑧) = 𝑒𝐿(𝑧)/𝑛.

We are now ready for the main theorem of this section.

Theorem 6.15. Suppose that 𝑓∶ 𝐵(𝑧0, 𝑅) → ℂ is a holomorphic function that
has a zero of order 𝑚 ≥ 1 at 𝑧0. Then there exists 0 < 𝑟 ≤ 𝑅 and a holomor-
phic homeomorphism 𝜑∶ 𝐵(𝑧0, 𝑟) → 𝜑(𝐵(𝑧0, 𝑟)) with 𝜑(𝑧0) = 0 and such that
𝑓(𝑧) = (𝜑(𝑧))𝑚 for 𝑧 ∈ 𝐵(𝑧0, 𝑟).

Proof. Since 𝑓 has a zero of order𝑚 at 𝑧0, we can write 𝑓(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧)
for some holomorphic function 𝑔∶ 𝐵(𝑧0, 𝑅) → ℂ with 𝑔(𝑧0) ≠ 0. In partic-
ular, there exists 𝑟1 > 0 such that 𝑈 = 𝑔(𝐵(𝑧0, 𝑟1)) does not contain 0. Let
ℎ(𝑧) = 𝑔(𝑧)1/𝑚 be a branch of 𝑚th root of 𝑔 we obtained in Corollary 6.14.
Then 𝑓(𝑧) = (𝜑(𝑧))𝑚, where 𝜑(𝑧) = (𝑧 − 𝑧0)ℎ(𝑧). Note that 𝜑′(𝑧0) = ℎ(𝑧0) =
𝑔(𝑧0)1/𝑚 ≠ 0. Hence, by the inverse function theorem 𝜑 maps 𝐵(𝑧0, 𝑟) bijec-
tively to an open set 𝜑(𝐵(𝑧0, 𝑟)) for some 𝑟 < 𝑟1 and 𝜑−1 is holomorphic with
[𝜑−1]′(𝑧) = 1

𝜑′(𝜑−1(𝑧)) .

Corollary 6.16. Under the assumptions of the theorem, 𝑓 is 𝑚-to-1 for 𝑧 ∈
𝜑−1(𝐵(𝑧0, 𝜀)) ⧵ {𝑧0} for 𝜀 > 0 small enough so that 𝐵(𝑧0, 𝜀) ⊂ 𝜑(𝐵(𝑧0, 𝑟)) (exer-
cise). In particular, if a holomorphic function 𝑔∶ 𝑈 → ℂ satisfies 𝑔′(𝑧) = 0 at
some 𝑧 ∈ 𝑈, then 𝑔 cannot be injective on 𝑈 (note that 𝑔(𝑤) − 𝑔(𝑧) has a zero
of order at least 2 so 𝑔(𝑤) is at least 2-to-1 near 𝑧).

Corollary 6.17 (Open mapping theorem). Let 𝑓∶ 𝑈 → ℂ be holomorphic and
non-constant. Then 𝑓 is an open map, meaning that if𝑉 ⊂ 𝑈 is open, then 𝑓(𝑉)
is open.

Proof. It is enough to show that for any 𝑧0 ∈ 𝑈 there exists a ball 𝐵(𝑧0, 𝑟) ⊂ 𝑈
such that𝑓(𝐵(𝑧0, 𝑟)) is open. Let 𝑔(𝑧) = 𝑓(𝑧)−𝑓(𝑧0). Since𝑓 is non-constant,
𝑔 has a zero of order 1 ≤ 𝑚 < ∞ at 𝑧0. By Theorem 6.15, there exists 𝑟 > 0 and
a holomorphic homeomorphism 𝜑∶ 𝐵(𝑧0, 𝑟) → 𝜑(𝐵(𝑧0, 𝑟)) such that 𝑔(𝑧) =
(𝜑(𝑧))𝑚 for 𝑧 ∈ 𝐵(𝑧0, 𝑟). Since both 𝜑 and the power map 𝑧 ↦ 𝑧𝑚 are open,
𝑔(𝐵(𝑧0, 𝑟)) is open as well, and as translations are open, so is 𝑓(𝐵(𝑧0, 𝑟)).
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7.1 The Riemann sphere

Consider the function 𝜄(𝑧) = 1/𝑧 defined on ℂ ⧵ {0}. Although the limit as
𝑧 → 0 does not exist in ℂ, the function still behaves in a controlled manner
near 0. Namely, for any 𝑅 > 0 we have 1/𝑧 ∉ 𝐵(0, 𝑅) once |𝑧| is small enough.
Thus, 𝜄(𝑧) eventually escapes every bounded set of ℂ as 𝑧 → 0, and in that
sense we could say that 𝜄(𝑧) → ∞.

Definition 7.1. The extended complex plane, also known as the Riemann
sphere, is the set ℂ̂ = ℂ∪ {∞} where a new point∞ has been added toℂ. ◆

With this definition, we may extend 𝜄 to a bijection ℂ̂ → ℂ̂ by setting 𝜄(0) =
∞ and 𝜄(∞) = 0. Note that 𝜄 is an involution1 thatmaps ℂ̂⧵{∞} ↔ ℂ̂⧵{0}. The
set ℂ̂ ⧵ {0} can thus be viewed via 𝜄 as another copy of ℂ and given a topology
by saying that 𝑈 ⊂ ℂ̂ ⧵ {0} is open if and only if 𝜄−1(𝑈) is open in ℂ. Finally,
we give the whole ℂ̂ a topology by saying that a set 𝑈 ⊂ ℂ̂ is open if and only
if 𝑈 ⧵ {∞} is open in ℂ̂ ⧵ {∞} and 𝑈 ⧵ {0} is open in ℂ̂ ⧵ {0}.

Lemma 7.2.The above construction defines a topology on ℂ̂.

Proof. Clearly∅ and ℂ̂ are open.
If𝑈 and𝑉 are open in ℂ̂, then𝑈∩𝑉⧵ {∞} = (𝑈 ⧵ {∞}) ∩ (𝑉 ⧵ {∞}) is open

in ℂ̂ ⧵ {∞} and similarly 𝑈 ∩ 𝑉 ⧵ {0} is open in ℂ̂ ⧵ {0}, so that 𝑈 ∩ 𝑉 is open
in ℂ̂.

If (𝑈𝑖)𝑖∈𝐼 is an arbitrary collection of open subsets of ℂ̂, then⋃𝑖∈𝐼 𝑈𝑖 ⧵ {∞} =
⋃𝑖∈𝐼(𝑈𝑖 ⧵ {∞}) is open in ℂ̂ ⧵ {∞} and similarly⋃𝑖∈𝐼 𝑈𝑖 ⧵ {0} is open in ℂ̂ ⧵ {0},
showing that⋃𝑖∈𝐼 𝑈𝑖 is open in ℂ̂.

Briefly speaking, whenever we need to study what happens near∞, we can
via the map 𝜄 instead look at the situation near 0. Thus, since 𝐵(0, 𝑟), 𝑟 > 0,
form a neighborhood basis of 0, the sets 𝜄(𝐵(0, 𝑟)) = {𝑧 ∈ ℂ ∶ |𝑧| > 1/𝑟} ∪ {∞}
form a neighborhood basis of∞, and in particular for a sequence 𝑧𝑛 ∈ ℂ̂ we
have 𝑧𝑛 → ∞ ⇔ 𝜄(𝑧𝑛) → 0 ⇔ 1/|𝑧𝑛| → 0 ⇔ |𝑧𝑛| → +∞, where we
have defined |∞| = +∞, the positive infinity in the extended real numbers
ℝ ∪ {±∞}. (Note that here∞ and +∞ are not the same thing. If we have a
sequence of real numbers 𝑥𝑛 that tends to ±∞, then on ℂ̂ they tend to∞, but
the converse is not true.)
1An involution is a function that is its own inverse.
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1 − 𝑤

1

|𝑢 + 𝑖𝑣|(0, 0, 1)

(𝑢, 𝑣, 𝑤)

𝑢 + 𝑖𝑣
1 − 𝑤

|𝑢 + 𝑖𝑣| ∶ (1 − 𝑤) = |𝑢 + 𝑖𝑣
1 − 𝑤
| ∶ 1

(𝑢′, 𝑣′, 𝑤′)

𝑢′ + 𝑖𝑣′

1 − 𝑤′

Figure 7.1: Stereographic projection viewed from the side.

Example 7.3. The functions 𝑧 ↦ 𝑧, 𝑧 ↦ 𝑧2, 𝑧 ↦ 1/𝑧 can be defined continu-
ously on ℂ̂ by taking limits.

On the other hand, the function exp(𝑧) cannot be continuously extended to
a function ℂ̂ → ℂ̂, since exp(𝑧) → 0 when 𝑧 → −∞ along the real axis, while
exp(𝑧) → +∞ when 𝑧 → +∞. ◆

The reason for the nameRiemann sphere is that ℂ̂ is topologically equivalent
to the two-dimensional sphere. A particularly nice homeomorphism between
the two is given by the stereographic projectionwhichmaps a point (𝑢, 𝑣, 𝑤) ∈
ℝ3 with 𝑢2 + 𝑣2 + 𝑤2 = 1 to the point 𝑢+𝑖𝑣1−𝑤 ∈ ℂ in the case 𝑤 ∈ [−1, 1), and
to∞ in the case (𝑢, 𝑣, 𝑤) = (0, 0, 1). The point 𝑢+𝑖𝑣1−𝑤 is where the line through
(0, 0, 1) and (𝑢, 𝑣, 𝑤) intersects the plane 𝑤 = 0, which we identify with ℂ, see
Figure 7.1. Note that the unit circle 𝑢2+𝑣2 = 1 stays fixed, while the points with
𝑤 < 0map to the unit disc 𝐵(0, 1)with (0, 0, −1)mapping to 0. The points with
𝑤 > 0 map to the exterior of the unit disc, with the point (0, 0, 1) mapping to
the point at infinity. An interesting feature of this map is that its inverse takes
both lines and circles on ℂ to circles on the sphere (we will skip the proof).

Above we wrote ℂ̂ as the union of the two sets ℂ̂⧵{∞} and ℂ̂⧵{0} and noted
that they can be parametrized by ℂ: For 𝑧 ∈ ℂ̂ ⧵ {∞} = ℂ we can simply use
id(𝑧) = 𝑧 itself as a coordinate, while for 𝑧 ∈ ℂ̂ ⧵ {0} we can use 𝜄(𝑧) = 1/𝑧 ≕ 𝜁
as a coordinate with 𝜄(∞) = 0. In the intersection ℂ̂ ⧵ {0,∞} we have the
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coordinate transformation 𝑧 ↦ 𝜁 = 1/𝑧, which is holomorphic. This makes ℂ̂
an example of a complex manifold with coordinate charts (ℂ̂ ⧵ {∞}, id) and
(ℂ̂ ⧵ {0}, 𝜄), but we are not going to talk about manifolds in general.

Let now 𝑈 ⊂ ℂ̂ be open and 𝑓∶ 𝑈 → ℂ̂ be a continuous function. We
say that 𝑓 is holomorphic near 𝑧0 ∈ 𝑈 if it is holomorphic in suitable local
coordinates around 𝑧0 and𝑤0 = 𝑓(𝑧0). More precisely, there are the following
cases:

• If 𝑧0, 𝑤0 ∈ ℂ, we can simply check that 𝑓(𝑧) is holomorphic near 𝑧0.

• If 𝑧0 ∈ ℂ and 𝑤0 = ∞, then we must use the 𝜁-coordinate on the image
side, which corresponds to checking that the function

𝑔(𝑧) = 𝜄(𝑓(𝑧)) = {
1
𝑓(𝑧) , if 𝑓(𝑧) ≠ ∞
0, if 𝑓(𝑧) = ∞

is holomorphic near 𝑧0.

• If 𝑧0 = ∞ and 𝑤0 ∈ ℂ, we must use the 𝜁-coordinate on the domain
side and check that

𝑔(𝜁) = 𝑓(𝜄−1(𝜁)) = {
𝑓(1/𝜁), if 𝜁 ≠ 0
𝑤0, if 𝜁 = 0

is holomorphic near 0.

• Finally, if 𝑧0 = 𝑤0 = ∞, we must use the 𝜁-coordinate both on the
domain and the image, which corresponds to showing that the function

𝑔(𝜁) = 𝜄(𝑓(𝜄−1(𝜁))) = {
1
𝑓(1/𝜁) , if 𝜁 ≠ 0 and 𝑓(1/𝜁) ≠ ∞
0, otherwise

is holomorphic near 0.

Example 7.4. The function 𝑓(𝑧) = 𝑧2 is holomorphic on ℂ̂ when we define
𝑓(∞) = ∞: It is clearly holomorphic on ℂ, while around 𝑧0 = ∞, we must
check the holomorphicity of 1/(1/𝜁)2 = 𝜁2 near 0, which is clearly holomor-
phic.

Similarly, 𝑓(𝑧) = 1/𝑧 with 𝑓(0) = ∞ and 𝑓(∞) = 0 is holomorphic. It is
clearly holomorphic on ℂ ⧵ {0} since in the usual coordinates 𝑓(𝑧) = 1/𝑧 is
holomorphic. Around 0 we map to∞, so we must use 𝜁-coordinates on the
image side and check that 1/𝑓(𝑧) = 1/(1/𝑧) = 𝑧 is holomorphic, which it is.
Finally, around∞ we map to 0, so we must use 𝜁-coordinates on the domain
side and check that 𝑓(1/𝜁) = 1/(1/𝜁) = 𝜁 is holomorphic, which it is. ◆
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Lemma 7.5. Let 𝑈 ⊂ ℂ be open and connected and suppose that 𝑓∶ 𝑈 → ℂ̂
is continuous and not identically ∞. Let also 𝑃 = {𝑧 ∈ 𝑈 ∶ 𝑓(𝑧) = ∞}.
Then 𝑓 is holomorphic if and only if the set 𝑃 has no accumulation points in 𝑈,
𝑓∶ 𝑈 ⧵ 𝑃 → ℂ is holomorphic, and every singularity point 𝑧 ∈ 𝑃 is a pole.

Proof. Suppose first that 𝑓 is holomorphic and not identically∞ on 𝑈. If 𝑃
has an accumulation point 𝑧0 ∈ 𝑈, then the function 1/𝑓(𝑧) has accumulating
zeros at 𝑧0, so that by the identity theorem 1/𝑓(𝑧) = 0 everywhere2, implying
that 𝑓(𝑧) = ∞ for all 𝑧 ∈ 𝑈, a contradiction. Next we note that if 𝑧0 ∈ 𝑃, then
𝜄 ∘ 𝑓 is holomorphic 𝐵(𝑧0, 𝑟) → ℂ for some 𝑟 > 0. In particular, it has a zero of
order 𝑚 ≥ 0 at 𝑧0 and

1
(𝑧−𝑧0)𝑚𝑓(𝑧)

= 𝑔(𝑧) is a holomorphic function in 𝐵(𝑧0, 𝑟)
with 𝑔(0) ≠ 0. Hence, 1/𝑔 is also holomorphic near 𝑧0 and 𝑓(𝑧) =

1
(𝑧−𝑧0)𝑚𝑔(𝑧)

has a pole of order𝑚 at 𝑧0.
Conversely, suppose that 𝑃 has no accumulation points and that 𝑓 is holo-

morphic outside 𝑃 with poles at 𝑃. Then for 𝑧0 ∈ 𝑃 with pole of order 𝑚,
the function ℎ(𝑧) = (𝑧 − 𝑧0)𝑚𝑓(𝑧) can be extended to be analytic at 𝑧0 with
ℎ(𝑧0) ≠ 0. Hence, 𝜄(𝑓(𝑧)) = (𝑧−𝑧0)𝑚/ℎ(𝑧) is analytic near 𝑧0 and by definition,
𝑓 is a holomorphic ℂ̂-valued function near 𝑧0.

Holomorphic functions 𝑓∶ 𝑈 → ℂ̂ are also called meromorphic (exclud-
ing the special case when 𝑓(𝑧) = ∞ for all 𝑧 ∈ 𝑈). Equivalently, a function is
meromorphic if it can be expressed as the ratio of two holomorphic functions
𝑓, 𝑔∶ 𝑈 → ℂ, where 𝑔 is not identically 0 (it is easy to see that ratios of holo-
morphic functions are meromorphic, but the converse is more difficult and we
skip the proof). For instance, 1/ sin(𝑧) is meromorphic in ℂ (it has first order
poles at 𝑧 = 𝜋𝑖𝑛, 𝑛 ∈ ℤ) but 𝑒1/𝑧 is not since it has an essential singularity
at 0. (On the other hand, 𝑒1/𝑧 is meromorphic (and even holomorphic) as a
function ℂ ⧵ {0} → ℂ̂.)

Let us close this section with the following theorem which says that holo-
morphic functions defined on the whole Riemann sphere are a fairly restricted
class.

Theorem 7.6. A map 𝑓∶ ℂ̂ → ℂ̂ is holomorphic if and only if it is a rational
function (extended continuously to ℂ̂) or 𝑓(𝑧) = ∞ everywhere.

Proof. Rational functions are clearly holomorphic since they have no essential
singularities. Suppose that 𝑓∶ ℂ̂ → ℂ̂ is holomorphic and not∞ everywhere.
Then 𝑓 can only have finitely many points 𝑧1,… , 𝑧𝑛 ∈ ℂ with 𝑓(𝑧𝑘) = ∞ for
all 𝑘 = 1,… , 𝑛 (otherwise, since ℂ̂ is compact, they accumulate somewhere).
Moreover, all of these points have to be poles of 𝑓. Let𝑄𝑘 be the principal part
of the Laurent series of 𝑓 at 𝑧𝑘. Also since 𝑓 is holomorphic at∞, we know

2It is easy to check that the identity theorem holds also for holomorphic functions that can
take the value∞.
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7 Conformal bijections

that in the 𝜁 coordinates 𝑓(1/𝜁) has no essential singularity around 0. Let 𝑃(𝜁)
be the principal part of the Laurent series of 𝑓(1/𝜁) at 0 and define

𝑔(𝑧) = 𝑓(𝑧) −
𝑛

∑
𝑘=1
𝑄𝑘(𝑧) − 𝑃(1/𝑧)

for 𝑧 ∈ ℂ ⧵ {𝑧1,… , 𝑧𝑛}. Then 𝑔 is bounded near every 𝑧𝑘 and also as 𝑧 →
∞, meaning that 𝑔∶ ℂ → ℂ is a bounded holomorphic function. Hence, by
Liouville’s theorem 𝑔 = 𝑐 is constant and 𝑓(𝑧) = 𝑐 + ∑𝑛𝑘=1 𝑄𝑘(𝑧) + 𝑃(1/𝑧) is a
rational function.

7.2 Möbius transformations

Definition 7.7. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ be such that 𝑎𝑑 − 𝑏𝑐 ≠ 0. A map 𝑓∶ ℂ̂ → ℂ̂
of the form

𝑓(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

is called a Möbius transformation. ◆
In the definition above it is understood that if 𝑐 = 0 then 𝑓(∞) = ∞, while

otherwise 𝑓(∞) = 𝑎𝑐 and 𝑓(
−𝑑
𝑐 ) = ∞. The condition 𝑎𝑑 − 𝑏𝑐 ≠ 0 ensures that

the map is well-defined and non-constant.
The following theorem identifies Möbius transformations as the holomor-

phic automorphisms of the sphere.

Theorem 7.8. Every holomorphic bijection ℂ̂ → ℂ̂ is a Möbius transformation
and vice versa. They form a group Aut(ℂ̂) under composition of mappings and
Aut(ℂ̂) is generated by Möbius transformations of the form 𝑧 ↦ 𝑧 + 𝑎 (transla-
tions, 𝑎 ∈ ℂ), 𝑧 ↦ 𝜆𝑧 (rotations and scaling, 𝜆 ∈ ℂ ⧵ {0}) and 𝑧 ↦ 1/𝑧.

Proof. Let us first show that every holomorphic bijection 𝑓∶ ℂ̂ → ℂ̂ is a
Möbius transformation. By Theorem 7.6 𝑓 is a rational function and we can
thus write

𝑓(𝑧) = 𝜆 (𝑧 − 𝑧1)
𝑘1…(𝑧 − 𝑧𝑛)𝑘𝑛

(𝑧 − 𝑤1)ℓ1…(𝑧 − 𝑤𝑚)ℓ𝑚

for some 𝑎, 𝑧1,… , 𝑧𝑛, 𝑤1,… ,𝑤𝑚, 𝜆 ∈ ℂ with 𝑛,𝑚 ≥ 0, 𝑘𝑗, ℓ𝑗 ≥ 1 and with
𝑧𝑗 ≠ 𝑤𝑘 for all 𝑗, 𝑘. Since 𝑓 is a bijection we must have 𝜆 ≠ 0. Note also that
if 𝑛 ≥ 2, then 𝑓 takes the value 0 at least twice and is not a bijection. Similarly,
if 𝑚 ≥ 2, then 𝑓 takes the value∞ at least twice. We cannot have 𝑛 = 𝑚 = 0,
since then 𝑓 is a constant map. Moreover, we must have 𝑘𝑗 = 1 for every
𝑗 = 1,… , 𝑛, since otherwise we have 𝑓′(𝑧𝑗) = 0, which implies that 𝑓 is not
injective around 𝑧𝑗. Similarly, we must have ℓ𝑗 = 1 because otherwise 1/𝑓 will
not be injective, so neither is 𝑓. If 𝑛 = 𝑚 = 1, then 𝑓(𝑧) = 𝜆𝑧−𝜆𝑧1𝑧−𝑤1 is a Möbius
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7 Conformal bijections

transformation because 𝑧1 ≠ 𝑤1. If 𝑛 = 1,𝑚 = 0, then 𝑓(𝑧) = 𝜆(𝑧 − 𝑧1) and if
𝑛 = 0,𝑚 = 1, then 𝑓(𝑧) = 𝜆𝑧−𝑤1 . In both cases 𝑓 is a Möbius transformation.

Let us next show that a given Möbius transformation 𝑓(𝑧) = 𝑎𝑧+𝑏𝑐𝑧+𝑑 with 𝑎𝑑 −
𝑏𝑐 ≠ 0 can be expressed as a composition of the given generators. Since the
generators are holomorphic bijections, this also shows that 𝑓 is a holomorphic
bijection.

Let us first consider the case 𝑐 = 0. Note that then 𝑎 and𝑑 have to be nonzero
since otherwise 𝑎𝑑 − 𝑏𝑐 = 0. We can use the following steps to reduce 𝑓 to the
identity transformation by using the generators

𝑎𝑧 + 𝑏
𝑑
𝑧− 𝑏𝑑−−−→ 𝑎𝑧
𝑑

𝑑
𝑎 𝑧−−→ 𝑧.

Letting 𝑓1(𝑧) = 𝑧 − 𝑏/𝑑 and 𝑓2(𝑧) = 𝑑𝑧/𝑎, we have 𝑓−11 (𝑧) = 𝑧 + 𝑏/𝑑 and
𝑓−12 (𝑧) = 𝑎𝑧/𝑑. Thus, 𝑎𝑧+𝑏𝑑 = (𝑓

−1
1 ∘ 𝑓−12 )(𝑧) expresses

𝑎𝑧+𝑏
𝑑 as a composition of

generators.
Suppose then that 𝑐 ≠ 0. This time we can use for instance the following

steps:

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

𝑧− 𝑎𝑐−−−→ 𝑏𝑐 − 𝑎𝑑
𝑐2𝑧 + 𝑐𝑑

𝑧
𝑏𝑐−𝑎𝑑−−−−→ 1
𝑐2𝑧 + 𝑐𝑑

1
𝑧−→ 𝑐2𝑧 + 𝑐𝑑

𝑧−𝑐𝑑
−−−−→ 𝑐2𝑧

𝑐−2𝑧
−−−−→ 𝑧.

Again, inverting the chain lets us express 𝑓 using the generators.

Let us next discuss the degrees of freedom in Möbius transformations. It
turns out that they are uniquely determined by specifying 3 points and their
images.

Theorem 7.9. Suppose that 𝑧1, 𝑧2, 𝑧3, 𝑤1, 𝑤2, 𝑤3 ∈ ℂ̂ are six points such that
𝑧𝑗 ≠ 𝑧𝑘 and𝑤𝑗 ≠ 𝑤𝑘 for 𝑗 ≠ 𝑘. Then there exists a uniqueMöbius transformation
𝑓∶ ℂ̂ → ℂ̂ such that 𝑓(𝑧𝑘) = 𝑤𝑘 for all 𝑘 = 1, 2, 3.

Proof. We note that the map

𝑓𝑧1,𝑧2,𝑧3 (𝑧) =
𝑧 − 𝑧1
𝑧 − 𝑧3
⋅ 𝑧2 − 𝑧3
𝑧2 − 𝑧1

satisfies 𝑓(𝑧1) = 0, 𝑓(𝑧2) = 1 and 𝑓(𝑧3) = ∞. Hence, 𝑔 = 𝑓−1𝑤1,𝑤2,𝑤3 ∘ 𝑓𝑧1,𝑧2,𝑧3 is
the map we are after, and it remains to show the uniqueness.

Suppose first that 𝑓(𝑧) = 𝑎𝑧+𝑏𝑐𝑧+𝑑 satisfies 𝑓(𝑧𝑘) = 𝑧𝑘 for 𝑘 = 1, 2, 3. We claim
that 𝑓 has to be the identity transform. Suppose first that none of the points
𝑧𝑘 is∞. Then

𝑓(𝑧) − 𝑧 = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑
− 𝑧 = −𝑐𝑧

2 + (𝑎 − 𝑑)𝑧 + 𝑏
𝑐𝑧 + 𝑑
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is a rational function that has 3 zeros at 𝑧1, 𝑧2 and 𝑧3. Its numerator is of degree
at most 2, so this implies that the numerator has to vanish and 𝑓(𝑧) = 𝑧. If
𝑧3 = ∞, then we must have 𝑐 = 0, and we again argue that

𝑓(𝑧) − 𝑧 = 𝑎𝑧 + 𝑏
𝑑
− 𝑧

is a polynomial of degree at most 1 but has zeros at 𝑧1 and 𝑧2, so it has to be 0.
Finally, suppose that 𝑧𝑘 and𝑤𝑘 are arbitrary and that𝑓 and𝑔 are twoMöbius

transformations mapping 𝑓(𝑧𝑘) = 𝑔(𝑧𝑘) = 𝑤𝑘 and 𝑔(𝑧𝑘) = 𝑤𝑘. Then 𝑔−1 ∘ 𝑓
maps 𝑧𝑘 ↦ 𝑧𝑘 for 𝑘 = 1, 2, 3, and thus it has to be the identity map and hence
𝑔 = 𝑓.

Consider next a circle |𝑧−𝑧0| = |𝑧0| in the planewith center at 𝑧0 and passing
through 0. As 𝑧0 → ∞ the circle looks more and more like a line. In ℂ̂ the
limiting object is in fact still topologically a circle, just passing through∞. It
therefore makes sense to define generalized circles as either circles or lines.

Definition 7.10. A generalized circle is a subset of ℂ̂ that is either a circle in
ℂ, or 𝐿 ∪ {∞} where 𝐿 is a line in ℂ. ◆

Theorem 7.11. Let 𝑓∶ ℂ̂ → ℂ̂ be a Möbius transformation. Then 𝑓maps gen-
eralized circles to generalized circles.

Proof. It is clear that the generators 𝑧 ↦ 𝑧 + 𝑎 and 𝑧 ↦ 𝑎𝑧 map generalized
circles to generalized circles, so we will be done if we can show that 𝑧 ↦ 1𝑧
does the same.

Note that the equation of a circle |𝑧 − 𝑎| = 𝑟 can be after squaring and ex-
panding written in the form

|𝑧|2 − 𝑎𝑧 − 𝑎𝑧 + |𝑎|2 − 𝑟2 = 0.

More generally, if we look at an equation of the form

𝑐|𝑧|2 − 𝑎𝑧 − 𝑎𝑧 + 𝑑 = 0

with 𝑐, 𝑑 ∈ ℝ and 𝑎 ∈ ℂ, then if 𝑐 ≠ 0 and 𝑐𝑑 < |𝑎|2, this represents the circle
with center 𝑎𝑐 and radius √|𝑎|

2−𝑐𝑑
|𝑐| . If 𝑐 = 0 and 𝑎 ≠ 0, we instead get the line

Re(𝑎𝑧) = 𝑎1𝑧1 + 𝑎2𝑧2 = 𝑑. Now, if 𝑤 = 1/𝑧 then 𝑧 satisfies the equation if and
only if 𝑤 satisfies

𝑐 − 𝑎𝑤 − 𝑎𝑤 + 𝑑|𝑤|2 = 0,

which is again an equation of the same form. Thus, 1/𝑧maps generalized cir-
cles bijectively to each other.
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7 Conformal bijections

Recall that affine transformations like scaling, rotation and translation pre-
serve both angles and ratios of lengths. In particular, if 𝑧1 is a complex number
that we treat as the origin and 𝑧2, 𝑧3 are two other numbers, then

𝑧2 − 𝑧1
𝑧3 − 𝑧1

is unchanged whenwemap 𝑧𝑗 ↦ 𝑓(𝑧𝑗)where𝑓(𝑧𝑗) = 𝑎𝑧+𝑏 for some 𝑎, 𝑏 ∈ ℂ.
For general Möbius transformations this is not true anymore, but a weaker
property still holds: they preserve ratios of ratios, also known as cross-ratios.

Definition 7.12. Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ ℂ̂ be distinct points. Their cross-ratio
(𝑧1, 𝑧2; 𝑧3, 𝑧4) is defined by setting

(𝑧1, 𝑧2; 𝑧3, 𝑧4) ≔
(𝑧3 − 𝑧1)(𝑧4 − 𝑧2)
(𝑧3 − 𝑧2)(𝑧4 − 𝑧1)

= 𝑧3 − 𝑧1
𝑧4 − 𝑧1
∶ 𝑧3 − 𝑧2
𝑧4 − 𝑧2
.

When two of the points are equal, we define the cross-ratio as a limit when one
of the points tends to the other. Similarly, if one of the points 𝑧𝑘 is∞, we may
define the cross-ratio as the corresponding limit as 𝑧𝑘 →∞. ◆

An alternative way of thinking about the cross-ratio is as follows: Suppose
that 𝑧1, 𝑧2, 𝑧3 are distinct and let ℎ(𝑧) = 𝑧3−𝑧1𝑧3−𝑧2 ⋅

𝑧−𝑧2
𝑧−𝑧1

be the unique Möbius
transformation that maps 𝑧1 ↦∞, 𝑧2 ↦ 0 and 𝑧3 ↦ 1. Then (𝑧1, 𝑧2; 𝑧3, 𝑧4) =
ℎ(𝑧4).

Theorem 7.13. Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ ℂ̂ be distinct and let 𝑓 be a Möbius transfor-
mation. Then

(𝑧1, 𝑧2; 𝑧3, 𝑧4) = (𝑓(𝑧1), 𝑓(𝑧2); 𝑓(𝑧3), 𝑓(𝑧4)).

Proof. Let ℎ be the Möbius transformation that maps 𝑧1 ↦ ∞, 𝑧2 ↦ 0 and
𝑧3 ↦ 1. Then 𝑔 = ℎ∘𝑓−1 is theMöbius transformation that maps𝑓(𝑧1) ↦ ∞,
𝑓(𝑧2) ↦ 0 and 𝑓(𝑧3) ↦ 1 and

(𝑧1, 𝑧2; 𝑧3, 𝑧4) = ℎ(𝑧4) = 𝑔(𝑓(𝑧4)) = (𝑓(𝑧1), 𝑓(𝑧2); 𝑓(𝑧3), 𝑓(𝑧4)).

Cross-ratio preservation also yields a goodway of computing the coefficients
of aMöbius transformation. Suppose that wewant to find theMöbius transfor-
mation 𝑓 that maps 𝑧𝑘 ↦ 𝑤𝑘, 𝑘 = 1, 2, 3. Then instead of writing 𝑓(𝑧) = 𝑎𝑧+𝑏𝑐𝑧+𝑑
and solving each of the three equations 𝑓(𝑧𝑘) = 𝑤𝑘 (and say 𝑎𝑑 − 𝑏𝑐 = 1 to fix
the normalization) for 𝑎, 𝑏, 𝑐, 𝑑, we can instead write the cross-ratio condition
(𝑧1, 𝑧2; 𝑧3, 𝑧) = (𝑤1, 𝑤2; 𝑤3, 𝑓(𝑧)) which holds for all 𝑧 ∈ ℂ and then solve for
𝑓(𝑧).

Example 7.14. Suppose that we want to find a Möbius transformation 𝑓 that
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maps 1 ↦ 3, 2 ↦ −𝑖 and 3 ↦ 1. Since 𝑓 has to preserve cross-ratios, we must
have (1, 2; 3, 𝑧) = (3, −𝑖; 1, 𝑓(𝑧)), or equivalently

(3 − 1)(𝑧 − 2)
(𝑧 − 1)(3 − 2)

= (1 − 3)(𝑓(𝑧) + 𝑖)
(𝑓(𝑧) − 3)(1 + 𝑖)

.

Simplifying we get
2𝑧 − 4
𝑧 − 1
= −2𝑓(𝑧) − 2𝑖
(𝑓(𝑧) − 3)(1 + 𝑖)

.

Multiplying by 𝑓(𝑧) − 3 we have

(𝑓(𝑧) − 3)2𝑧 − 4
𝑧 − 1
= −2𝑓(𝑧) − 2𝑖
1 + 𝑖

.

Collecting factors of 𝑓(𝑧) and moving the rest to the right-hand side we have

𝑓(𝑧) (2𝑧 − 4
𝑧 − 1
+ 2
1 + 𝑖
) = 6𝑧 − 12
𝑧 − 1
− 2𝑖
1 + 𝑖
.

Multiplying by (𝑧 − 1)(1 + 𝑖) we get

𝑓(𝑧)((2𝑧 − 4)(1 + 𝑖) + 2(𝑧 − 1)) = (6𝑧 − 12)(1 + 𝑖) − 2𝑖(𝑧 − 1)

and simplifying gives us

𝑓(𝑧)((4 + 2𝑖)𝑧 − 6 − 4𝑖) = (6 + 4𝑖)𝑧 − 12 − 10𝑖

and finally

𝑓(𝑧) = (6 + 4𝑖)𝑧 − 12 − 10𝑖
(4 + 2𝑖)𝑧 − 6 − 4𝑖

= (3 + 2𝑖)𝑧 − 6 − 5𝑖
(2 + 𝑖)𝑧 − 3 − 2𝑖

. ◆

7.3 Conformal maps

Conformal maps𝑓 are maps that are locally invertible and preserve angles and
orientation at every point, meaning that their derivative only rotates or scales
tangent vectors – see Figure 7.2 for an example. In other words, at a given
point 𝑧with tangent vector 𝑣we should have 𝑑𝑓𝑧(𝑣) = 𝛼(𝑧)𝑣 for some complex
number 𝛼(𝑧) ∈ ℂ ⧵ {0}, but this is equivalent with having 𝑑𝑓𝑧 = 𝑓′(𝑧) 𝑑𝑧 with
𝑓′(𝑧) ≠ 0.

Definition 7.15. A mapping 𝑓∶ 𝑈 → ℂ is conformal if it is holomorphic and
𝑓′(𝑧) ≠ 0 for all 𝑧 ∈ 𝑈. ◆

Note that sinceMöbius transformations are injective, theymust have nonzero
derivative everywhere (assuming that we use the 𝜁-coordinates at the pole).
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Figure 7.2: The function𝑓(𝑧) = 𝑧+0.0731647𝑧5+0.00358709𝑧9 approximates
a conformalmap from the square [−1, 1]2 to the unit disc [3, p. 286]
(in reality themap is given by a certain elliptic function). Note how
the grid lines still intersect at right angles after the mapping except
at the four points corresponding to the vertices of the square where
the map is not conformal.

An important question that often arises is whether there exists a conformal
bijection 𝑈 → 𝑉 between two open sets 𝑈,𝑉 ⊂ ℂ, and to find such a bijec-
tion if possible. Via conformal mappings it is often possible to solve a given
problem in an easier domain and then transfer the results back to the orig-
inal domain. The most important theorem in this direction is the Riemann
mapping theorem, which we will only state here.

Theorem 7.16 (Riemann mapping theorem). Suppose that 𝑈 ⊂ ℂ is open,
nonempty, simply connected and 𝑈 ≠ ℂ. Then there exists a conformal bijec-
tion 𝑓∶ 𝐵(0, 1) → 𝑈.

The conformalmaps coming out of the Riemannmapping theorem are typi-
cally non-explicit, although their qualitative properties can be studied further.
We will instead focus on looking at some simple concrete conformal mapping
problems involving Möbius transformations and other basic functions.

Example 7.17. Let us find a Möbius transformation that takes 𝜕𝐵(0, 1) to ℝ,
with 𝐵(0, 1) mapping to the upper half-planeℍ = {𝑧 ∈ ℂ ∶ Im(𝑧) > 0}. We
will first pick three points on 𝜕𝐵(0, 1), say 𝑧1 = −1, 𝑧2 = 1 and 𝑧3 = 𝑖. Next we
need to decide where want to map them and pick three image points on the
generalized circle ℝ ∪ {∞}. Since we want to map 𝐵(0, 1) to the upper half-
plane, and since conformal maps preserve orientation, we can simply make
sure that when we trace 𝜕𝐵(0, 1) from 𝑧1 to 𝑧2 to 𝑧3 then on the image side
when we go from 𝑓(𝑧1) to 𝑓(𝑧2) to 𝑓(𝑧3), the upper half-plane always stays to
the left of the curve. This means that we should pick 𝑓(𝑧1), 𝑓(𝑧2) and 𝑓(𝑧3) in
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7 Conformal bijections

𝑖

10−1

𝑖 = 𝑓(0)

0 = 𝑓(1)∞ = 𝑓(−1) 𝑓(−1) = ∞
1 = 𝑓(𝑖)−1 = 𝑓(−𝑖)

𝑓(𝑧) = 𝑖1 − 𝑧
1 + 𝑧

−𝑖 = 𝑓(∞)
𝑓−1(𝑧) = 𝑖 − 𝑧

𝑖 + 𝑧

Figure 7.3: The Möbius transformation 𝑓(𝑧) = 𝑖1−𝑧1+𝑧 and its inverse.
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−4 −3 −2 −1 0 1 2 3 4
0

1

2

Figure 7.4: The image of Pac-Man under 𝑓(𝑧) = 𝑖1−𝑧1+𝑧 before it eats the singu-
larity at −1.

(cyclically) increasing order. Let us pick 𝑓(𝑧1) = ∞, 𝑓(𝑧2) = 0 and 𝑓(𝑧3) = 1.
In this case the map is then given by

𝑓(𝑧) = 𝑧 − 1
𝑧 + 1
⋅ 𝑖 + 1
𝑖 − 1
= 𝑖1 − 𝑧
1 + 𝑧
.

It is easy to check that

𝑓−1(𝑧) = 𝑖 − 𝑧
𝑖 + 𝑧
.

A schematic plot of this map and its inverse is in Figure 7.3 and the map is
plotted in Figure 7.4. ◆

Example 7.18. Consider the open set𝑈 = {𝑧 ∈ ℂ ∶ Re(𝑧), Im(𝑧) > 0}, which is
the positive quadrant of the complex plane. It can also be viewed as the sector

85



7 Conformal bijections

𝑈 = {𝑟𝑒𝑖𝜃 ∶ 𝑟 > 0, 𝜃 ∈ (0, 𝜋/2)}. The map 𝑓(𝑧) = 𝑧2 doubles the angle and
squares the radius, so it takes 𝑈 bijectively to the upper half planeℍ. We also
have 𝑓′(𝑧) ≠ 0 for 𝑧 ∈ 𝑈, so 𝑓 is conformal. Composing this with the map in
the previous example we get a conformal bijection 𝑈 → 𝐵(0, 1) given by

𝑧 ↦ 𝑖 − 𝑧
2

𝑖 + 𝑧2
.

Note that themap 𝑧 ↦ 𝑧2 is not conformal at 𝑧 = 0. Indeed, the 90∘ angle at
the boundary of𝑈 at 0 gets transformed into a 180∘ angle, even though angles
are preserved everywhere else. ◆

Let us finish by considering conformalmaps fromℍ or𝐵(0, 1) to itself. One
can easily find Möbius transformations that map 𝐵(0, 1) → 𝐵(0, 1) orℍ → ℍ
bijectively, so themain content of the theorems below is that there are no other
exotic conformal bijections.

Theorem 7.19. Let 𝑎 ∈ 𝐵(0, 1) and 𝜃 ∈ [0, 2𝜋). The Möbius transformation

𝑓(𝑧) = 𝑒𝑖𝜃 𝑧 − 𝑎
1 − 𝑎𝑧

is a conformal bijection 𝐵(0, 1) → 𝐵(0, 1) and all such maps are of this form.

Proof. Note first that if 𝑓 is of the given form then for 𝑧 ∈ 𝜕𝐵(0, 1) we have

|𝑓(𝑧)| = |𝑧 − 𝑎|
|1 − 𝑎𝑧|

= |𝑧 − 𝑎|
|1 − 𝑎/𝑧|

= |𝑧 − 𝑎|
|𝑧 − 𝑎|
= 1

since 𝑧 = 1/𝑧 when |𝑧| = 1. Thus, 𝑓 maps the unit circle to unit circle, and
since 𝑓(𝑎) = 0, it must map the inside of the circle to the inside of the circle.

Suppose next that 𝑓∶ 𝐵(0, 1) → 𝐵(0, 1) is a conformal bijection and let 𝑏 =
𝑓(0). If 𝜑(𝑧) = 𝑧−𝑏

1−𝑏𝑧
, then 𝑔 = 𝜑 ∘ 𝑓 is a conformal bijection 𝐵(0, 1) → 𝐵(0, 1)

with 𝑔(0) = 0. By Schwarz lemma we must have |𝑔′(0)| ≤ 1. Similarly, 𝑔−1 is
a conformal bijection and by Schwarz lemma also |(𝑔−1)′(𝑧)| ≤ 1. Noting that
(𝑔−1)′(0) = 1/𝑔′(0) we get |𝑔′(0)| = 1. But then, again by Schwarz lemma, we
must have 𝑔(𝑧) = 𝑒𝑖𝜃𝑧 for some 𝜃 ∈ [0, 2𝜋). Noting that 𝜑−1(𝑧) = 𝑧+𝑏

1+𝑏𝑧
we have

𝑓(𝑧) = 𝜑−1(𝑔(𝑧)) = 𝑒
𝑖𝜃𝑧 + 𝑏
1 + 𝑏𝑒𝑖𝜃𝑧

= 𝑒𝑖𝜃 𝑧 + 𝑒
−𝑖𝜃𝑏

1 + 𝑒𝑖𝜃𝑏𝑧
,

which is of the wanted form with 𝑎 = −𝑒−𝑖𝜃𝑏.

Theorem 7.20.The conformal maps 𝑓∶ ℍ → ℍ are the Möbius transforma-
tions 𝑎𝑧+𝑏𝑐𝑧+𝑑 with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ satisfying 𝑎𝑑 − 𝑏𝑐 > 0.

86



Proof. Let 𝜑(𝑧) = −𝑖𝑧−1𝑧+1 be the Möbius transformation mapping 𝐵(0, 1) → ℍ
with 𝑓(−1) = ∞, 𝑓(1) = 0 and 𝑓(𝑖) = 1. A map 𝑓∶ ℍ → ℍ is a conformal
bijection if and only if 𝜑 ∘ 𝑓 ∘ 𝜑−1 is a conformal bijection 𝐵(0, 1) → 𝐵(0, 1).
This implies that 𝑓 has to be a Möbius transformation.

The Möbius transformations that mapℍ → ℍ need to map ℝ → ℝ while
preserving orientation. Any such map 𝑓 can be specified by three distinct
points𝑥1, 𝑥2, 𝑥3 ∈ ℝ∪{∞} and requiring𝑓(𝑥1) = ∞,𝑓(𝑥2) = 0 and𝑓(𝑥3) = 1,
while making sure that 𝑥1, 𝑥2, 𝑥3 go cyclically from left to right on the real axis.
Suppose first that 𝑥1, 𝑥2, 𝑥3 ≠ ∞. The map is then given by

𝑓(𝑧) = (𝑧 − 𝑥2)(𝑥3 − 𝑥1)
(𝑧 − 𝑥1)(𝑥3 − 𝑥2)

= 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

with

𝑎 = 𝑥3 − 𝑥1, 𝑏 = −𝑥2(𝑥3 − 𝑥1), 𝑐 = 𝑥3 − 𝑥2, 𝑑 = −𝑥1(𝑥3 − 𝑥2).

Note that
𝑎𝑑 − 𝑏𝑐 = (𝑥3 − 𝑥2)(𝑥3 − 𝑥1)(𝑥2 − 𝑥1)

and this is positive if and only if 𝑥1 < 𝑥2 < 𝑥3 or 𝑥3 < 𝑥1 < 𝑥2 or 𝑥2 < 𝑥3 < 𝑥1,
which is the case if and only if the points are ordered cyclically from left to
right. If one of the points, say 𝑥3, equals∞, then

𝑓(𝑧) = 𝑧 − 𝑥2
𝑧 − 𝑥1
= 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

with
𝑎 = 1, 𝑏 = −𝑥2, 𝑐 = 1, 𝑑 = −𝑥1,

and 𝑎𝑑 − 𝑏𝑐 = 𝑥2 − 𝑥1, which is positive if and only if 𝑥2 > 𝑥1, again meaning
that 𝑥1, 𝑥2,∞ are ordered cyclically from left to right. The cases 𝑥1 = ∞ or
𝑥2 = ∞ can be handled similarly.

These results are useful for instance when one thinks about uniqueness in
the Riemann mapping theorem.

Example 7.21. Suppose that𝑈 ≠ ℂ is simply connected and 𝑓, 𝑔∶ 𝑈 → ℍ are
two conformal bijections. Then𝜑 = 𝑓∘𝑔−1 is a conformal automorphismofℍ,
and hence aMöbius transformation. Thus,𝑓 and 𝑔 are related by𝑓 = 𝜑∘𝑔. ◆
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